摘要
以我国通航城市为研究区,选取2020年初的疫情数据和航空运输网络数据作为实验数据,并从人口流动、区域人口特征和医疗水平3个维度选取了多个解释变量以提高模型拟合精度,构建了基于属性空间距离的情景化多尺度地理加权回归模型(CMGWR),分析了各因素对疫情的空间分异影响。结果表明,相较于传统GWR和MGWR模型,CMGWR模型对于疫情影响因素作用程度的空间分异特征具有更强的解释能力;疫情与航空运输规模的关联具有较强的空间异质性,且关联度较高的地区均为区域航空枢纽,其他因素对疫情影响力较大的范围也以区域核心城市为主。
Taking the cities with airports as the research area,we used the epidemic data and air transport network data in early 2020,and five explanatory variables from population flow,regional demographic characteristics and medical level improving the model fitting accuracy to build a contextualized multi-scale geographically weighted regression model(CMGWR)based on the distance in attribute space.And then,we analyzed the spatial heterogenous impact of factors on the epidemic.The results show that the CMGWR model can better explain the spatial heterogeneity in the influence factors of the epidemic than the traditional GWR and MGWR models.The association between the epidemic and the scale of air transport has strong spatial heterogeneity,and the areas with higher associations are all regional air hubs.Other factors that have a strong influence on the epidemic are also core cities in the regions.
作者
田诗佳
包丹文
尹俐平
程昊
姚馨宇
TIAN Shijia;BAO Danwen;YIN Liping;CHENG Hao;YAO Xinyu(School of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处
《地理空间信息》
2024年第9期19-21,47,共4页
Geospatial Information
基金
国家自然科学基金民航联合重点资助项目(U2033203)
南京航空航天大学研究生科研与实践创新计划资助项目(xcxjh20210705)。