期刊文献+

基于XGBoost的网格化雷电预测模型

Grid Lightning Prediction Model Based on XGBoost
下载PDF
导出
摘要 电网设备智能防雷是人工智能与电力工作很好的结合点。本文采用单一的雷电探测数据,基于XGBoost算法和网格化的思想,建立雷电预测模型。主要结论如下:①模型仅仅依赖雷电探测数据,实现了探测器周围各网格的非定点雷电分级预警,时间提前量为30分钟,网格大小为5 km*5 km,预测效果较好。②模型的预测精确率可达78.6%,预测召回率可达65.6%,F1值可到71.5%。③缩小网格一定程度可提升预测精确率,但漏报率也随之提升,两个指标矛盾又统一;将网格扩充为25宫格时,增加了大量不必要的特征值,导致模型预测效果降低。本文的模型改进了当前雷电预测模型定点预测的局限性,增加了分级预警,在主动防雷模式中具有现实意义。 Intelligent lightning protection for power grid equipment is a good combination of artificial intelligence and power work.This paper uses a single lightning detection data to establish a lightning prediction model based on the XGBoost algorithm and gridding ideas.The main conclusions are as follows:①The model only relies on lightning detection data to achieve non-fixed-point lightning hierarchical early warning for each grid around the detector.The time advance is 30 minutes,the grid size is 5km*5km,and the prediction effect is good.②The prediction accuracy of the model can reach 78.6%,the prediction recall rate can reach 65.6%,and the F1 value can reach 71.5%.③Reducing the grid can improve the prediction accuracy to a certain extent,but the false negative rate will also increase.The two indicators are contradictory and unified;when the grid is expanded to 25 grids,a large number of unnecessary feature values are added,resulting in model prediction effect reduced.The model in this paper improves the limitations of fixed-point prediction of the current lightning prediction model and adds hierarchical early warning,which has practical significance in active lightning protection mode.
作者 黄哲浩 HUANG Zhe-hao(State Grid Jiangsu Electric Power Co.,Ltd.Zhangjiagang Power Supply Company,Zhangjiagang,215600,China)
出处 《山东工业技术》 2024年第4期107-114,共8页 Journal of Shandong Industrial Technology
关键词 雷电预测 主动防雷 网格化 XGBoost算法 lightning prediction,active lightning protection gridding,XGBoost algorithm
  • 相关文献

参考文献8

二级参考文献108

  • 1陈明轩,俞小鼎,谭晓光,王迎春.对流天气临近预报技术的发展与研究进展[J].应用气象学报,2004,15(6):754-766. 被引量:132
  • 2石星.毫米波雷达的应用和发展[J].电讯技术,2006,46(1):1-9. 被引量:30
  • 3阳文锐,王如松,黄锦楼,陈展,李锋.反距离加权插值法在污染场地评价中的应用[J].应用生态学报,2007,18(9):2013-2018. 被引量:69
  • 4梁曦东,陈昌渔,周远翔.高电压工程[M].北京:清华大学出版社.2006.
  • 5Kenneth L, Murphy M J. An overview of lightning locating systems: history, techniques, and data uses, with an in-depth look at the U. S. NLDN[J]. IEEE Trans on Electromagnetic Compatibility, 2009, 51(3): 499-518.
  • 6Mueller C, Saxen T, Roberts R, et al. Auto-nowcast system[J]. Weather and Forecasting, 2003(18): 545-561.
  • 7Rakov V A, Rachidi F. Overview of recent progress in lightning research and lightning protection[J]. IEEE Trans on Electromagnetic Compatibility, 2009, 51(3): 428-442.
  • 8Guo Juntian, Gu Shanqiang, Feng Wanxing. A lightning motion prediction technology based on spatial clustering methodiC]//2011 7th Asia-Pacific International Conference on Lightning, Chengdu, China, 2011: 788-793.
  • 9Martin Ester, Hans-Peter Kriegel, Jtirg Sander, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, 1996: 226-231.
  • 10Carlos Alberto Vasconcellos, Cesar Beneti, Fdbio Sato, et al. Electrical thunderstorm nowcasting using lightning data mining[C]//19th International Lightning Detection Conference, Tucson, Arizona, 2006:" 1-3.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部