摘要
为改善医院设施设备维修数据手段落后问题,提出基于微信小程序的医院设施设备报修系统,结合粒子群算法与支持向量机改进设备故障预测。结果显示,该方法在测试集与验证集上运行时,当系统分别迭代至第11次与第8次时,实验所构建方法出现最大适应度值,数值分别为0.949与0.975。另外在测试集上,当数据量为400条时,实验构建的方法误差重合于目标误差线,仅为0.05。应用“一站式服务平台”后,综合维修满意率高达97.82%,说明该方法能对维修任务进度进行有效监督,调动维修人员的工作积极性。
To improve the problem of outdated maintenance data for hospital facilities and equipment,a hospital facility and equipment repair system based on WeChat mini program is proposed,which combines particle swarm optimization algorithm and support vector machine to improve equipment fault prediction.The results showed that when the method was run on the test set and validation set,the maximum fitness values of the method constructed in the experiment were 0.949 and 0.975 when the system iterated to the 11th and 8th times,respectively.In addition,on the test set,when the amount of data is 400,the method error constructed in the experiment coincides with the target error line,which is only 0.05.After applying the“one-stop service platform”,the comprehensive maintenance satisfaction rate reached 97.82%.This method can effectively supervise the progress of maintenance tasks and mobilize the work enthusiasm of maintenance personnel.
作者
符捷
陈梅
刘霞
FU Jie;CHEN Mei;LIU Xia(Shanghai Sixth People’s Hospital Operations Support Office,Shanghai 200233,China;Shanghai Sixth People’s Hospital Dean’s Office,Shanghai 200233,China)
出处
《电子设计工程》
2024年第19期58-61,66,共5页
Electronic Design Engineering
关键词
微信小程序
医院
设施设备
报修
故障
WeChat applet
hospital
equipment
repair report
fault