摘要
本文主要研究了经过序和、三角和运算后形成的新格的凸子格格数目同原来的有限格凸子格格数目之间的数量关系,并将其进行了推广。在此基础上,得到了有限格凸子格格数目同格自身结构的一些特殊关系。
This article mainly studies the quantitative relationship between the number of the lattice of convex sublattice in a new lattice formed after ordinal sum,glued sum,and the number of the lat⁃tice of convex sublattice in the original finite lattice,and promote it;On this basis,some special re⁃lationships between the number of the lattice of convex sublattice and the structure of the finite lat⁃tice itself are obtained.
作者
黄端
张昆龙
HUANG Duan;ZHANG Kunlong(College of Science,Minzu University of China,Beijing 100081,China)
出处
《中央民族大学学报(自然科学版)》
2024年第3期54-61,共8页
Journal of Minzu University of China(Natural Sciences Edition)
关键词
有限格
凸子格
凸子格格
序和
三角和
finite lattice
convex sublattice
the lattice of convex sublattice
ordinal sum
glued sum