期刊文献+

Adaptive Control of Lower-Limb Exoskeletons for Walking Assistance Based on Inter-Joint Coordination

原文传递
导出
摘要 Unilateral motor impairment can disrupt the coordination between the joints,impeding the patient’s normal gait.To assist such patients to walk normally and naturally,an adaptive control algorithm based on inter-joint coordination was proposed in this work for lower-limb exoskeletons.The control strategy can generate the reference trajectory of the affected leg in real time based on a motion coordination model between the joints,and adopt an adaptive controller with virtual windows to track the reference trajectory.Long Short-Term Memory(LSTM)network was also adopted to establish the coordination model between the joints of both lower limbs,which was optimized by preprocessing angle information and adding gait phase information.In the adaptive controller,the virtual windows were symmetrically distributed around the reference trajectory,and its width was adjusted according to the gait phase of the auxiliary leg.In addition,the impedance parameters of the controller were updated online to match the motion capacity of the affected leg based on the spatiotemporal symmetry factors between the bilateral gaits.The LSTM coordination model demonstrated good accuracy and generality in the gait database of seven individuals,with an average root mean square error of 3.5 and 4.1 for the hip and knee joint angle estimation,respectively.To further evaluate the control algorithm,four healthy subjects walked wearing the exoskeleton while additional weights were added around the ankle joint to simulate an asymmetric gait.From the experimental results,it was shown that the algorithm improved the gait symmetry of the subjects to a normal level while exhibiting great adaptability to different subjects.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1775-1787,共13页 仿生工程学报(英文版)
基金 supported by the Graduate Scientific Research and Innovation Foundation of Chongqing,China(CYB19062) the China Scholarship Council(CSC202206050121).
  • 相关文献

参考文献5

二级参考文献3

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部