期刊文献+

基于联邦学习的医疗数据共享与隐私保护

Medical data sharing and privacy protection based on federated learning
下载PDF
导出
摘要 针对医疗数据共享中的“数据孤岛”问题,提出一个基于联邦学习的医疗数据共享与隐私保护方案。利用差分隐私技术对各个医疗机构的本地模型参数添加噪声,解决参数泄露的问题;全局模型通过编写的智能合约聚合并上传区块链,避免过度依赖中心聚合服务器;针对提出的隐私保护方案对差分隐私噪声的添加位置进行实验和讨论。实验结果表明,该方案可以在去中心化的同时保护数据的隐私,达到了较高的准确度,找到了合适的噪声添加位置。 To solve the data silos problem in medical data sharing,a medical data sharing and privacy protection scheme based on multi-layer blockchain and federated learning was proposed.The differential privacy technology was used to add noise to the local model parameters of each medical institution to solve the problem of parameter leakage.The global model aggregated and uploaded the blockchain by writing smart contracts to avoid over-reliance on the central aggregation server.The experiment and discussion on adding differential privacy noise in different positions were carried out.Experimental results show that the scheme can protect the privacy of data and achieve high privacy while decentralization,and the appropriate location for adding differential privacy noise is obtained.
作者 刘振涛 李涵 吴浪 秦宇 LIU Zhen-tao;LI Han;WU Lang;QIN Yu(School of Applied Science,Beijing Information Science and Technology University,Beijing 100192,China;Trusted Computing and Information Assurance Laboratory,Institute of Software,Chinese Academy of Science,Beijing 100190,China)
出处 《计算机工程与设计》 北大核心 2024年第9期2577-2583,共7页 Computer Engineering and Design
基金 国家自然科学基金面上基金项目(61872343)。
关键词 联邦学习 多层区块链 医疗数据共享 差分隐私 聚合 智能合约 隐私保护 federated learning multi-layer blockchain healthcare data sharing differential privacy aggregation smart contracts privacy protection
  • 相关文献

参考文献3

二级参考文献13

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部