摘要
为区分基于评论文本推荐算法中不同评论文本数据对不同用户或物品的差异,提出一种融合注意力机制和评论文本特征的推荐算法(RAAM)。在卷积神经网络中加入三级注意力机制,分别从单词级别、语句级别和评论级别为不同用户或物品区分评论数据的重要性,引入共同注意力网络模拟用户与物品之间的交互,获取更多用户和物品的交互信息,提高推荐效果。在Amazon的5个数据集上的对比实验结果验证了算法的有效性。
To distinguish the importance of different review data for different users and items in the recommendation algorithm based on review,a recommendation algorithm combining attention mechanism and review feature was proposed(RAAM).A three-level attention mechanism was added into the convolutional neural network to distinguish the importance of comments for users or items from word level,sentence level and comment level.A co-attention network was introduced to simulate the interaction between the user and the item,so more fine-grained interaction characteristics were obtained.Experimental results on five Amazon data sets verify the effectiveness of the recommendation algorithm.
作者
潘莹
李浩
王世辉
许杏
PAN Ying;LI Hao;WANG Shi-hui;XU Xing(Information Network Center,Guangxi University,Nanning 530004,China;School of Electrical Engineering,Guangxi University,Nanning 530004,China)
出处
《计算机工程与设计》
北大核心
2024年第9期2764-2770,共7页
Computer Engineering and Design
基金
广西高等教育本科教学改革工程重点基金项目(2021JGZ103)。
关键词
推荐算法
注意力机制
共同注意力网络
评论文本
评分预测
文本特征
卷积神经网络
recommendation algorithm
attention mechanism
co-attention network
review text
score prediction
review feature
convolutional neural network