期刊文献+

改进BBO优化BP神经网络的短期风电功率预测模型

Short-Term Wind Power Prediction Model Based on Improved BBO and Optimized BP Neural Network
下载PDF
导出
摘要 为了提高预测模型在处理风电功率时间序列数据中的复杂模式和非线性特征时的识别能力,提出了一种新的预测模型。通过改进完全自适应噪声集合经验模态分解算法进行信号处理,然后根据改进生物地理学优化算法对反向传播神经网络进行初始权重优化,进一步提升短期风电功率预测的准确度和稳定性。通过实际应用案例表明,与其他优化算法相比,提出的模型在MAE、RMSE和MAPE上的表现分别平均提高了43.21%、37.98%和36.84%,显示出更高的预测准确度,仿真结果验证了本方法在短期风电功率预测领域的效果及其明显的优势。 To improve the recognition ability of the prediction model in dealing with complex patterns and nonlinear features in wind power time series data,a new prediction model is proposed in this study.Signal processing is performed by the improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise algorithm,and then the initial weights of the Back Propagation Neural Network are optimized according to the improved BBO algorithm to further improve the accuracy and stability of short-term wind power prediction.Practical application cases show that compared with other optimization algorithms,the performance of the proposed model on MAE,RMSE and MAPE is improved by 43.21%,37.98%and 36.84%on average,respectively,showing higher prediction accuracy.Simulation results validate the effect and obvious advantages of the proposed method in the field of short-term wind power prediction.
作者 罗丹 章若冰 余娟 谭芝娴 Luo Dan;Zhang Ruobing;Yu Juan;Tan Zhixian(Hunan Railway Professional Technology College,Zhuzhou 412001,Hunan,China)
出处 《绿色科技》 2024年第12期263-269,共7页 Journal of Green Science and Technology
基金 湖南省自然科学基金项目(编号:2021JJ60068)。
关键词 短期风电功率预测 完全自适应噪声集合经验模态分解 反向传播神经网络 生物地理学优化算法 short-term wind power prediction Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN) Back Propagation Neural Network(BPNN) Biogeography-Based Optimization(BBO)
  • 相关文献

参考文献8

二级参考文献131

  • 1马海平,李雪,林升东.生物地理学优化算法的迁移率模型分析[J].东南大学学报(自然科学版),2009,39(S1):16-21. 被引量:46
  • 2Westwiek D T, Kearney R E. Identification of a Hammerstein model of the stretch reflex EMG using separable least squares[ C ]. Proceedings of the 22nd Annual International Engineering in Medi- cine and Biology Society. Chicago: IEEE, 2000-3: 1901-1904.
  • 3Dan Simon. Biogeography-based optimiz- ation[ J ]. IEEE Trans- actions on Evolutionary Computation, 2008,6 ( 12 ) : 702 - 713.
  • 4Maria/ping, D Simon, Fei Minml, Xie Zhikun. Variations of bio- geography-based opti- mization and Markov analysis [ J]. Informa- tion Sciences, 2013,220:492 - 506.
  • 5吴斌,林锦国,崔志勇.生物地理学优化算法中迁移算子的比较[J].系统工程与电子技术,2011,30(11):2231-2236.
  • 6H F Chen. Pathwise convergence of recurs- ire identification al- gorithms for Hammers- tein systems [ J ]. IEEE Trans. on Auto- matic Control, 2004,49(10) : 1641-1649.
  • 7D Du, D Simon, M Ergezer. Biogeography-based optimization combined with evolutionary strategy and immigration refusal[ C ]. Systems, Man and Cybernetics, 2009 SMC 2009 IEEE Interna- tional Conference on: IEEE ; 2009:997-1002.
  • 8V Panchal, P Singh, N Kaur, H Kundra. Biogeography based satellite image classification[J]. International Journal of Comput- er Science and Information Security, 2009,6(2) :269-274.
  • 9K Narendra, P Gallman. An iterative method for the identification of nonlinear systems using the Hammerstein model [ J ]. IEEE Trans. on Automatic Control, 1966,11 (3) : 546-550.
  • 10潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,28(26):87-91. 被引量:110

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部