期刊文献+

光纤光谱技术结合SNV-CARS-GWO-SVR模型的樱桃番茄SSC无损检测

Nondestructive Detection of the Soluble Solids Content of Cherry Tomatoes Using Fiber Optic Spectroscopy and an SNV-CARS-GWO-SVR Model
下载PDF
导出
摘要 樱桃番茄的可溶性固体含量(Soluble Solids Content,SSC)是评价其品质和成熟状态的关键参数。该文搭建了光纤光谱透射检测系统采集了不同成熟度樱桃番茄样本的原始光谱信息后,通过理化实验测定样本的SSC指标经SPXY算法对样本进行划分;然后用标准正态变量变换等算法(Standard Normal Variable transformation,SNV)对采集到的原始光谱进行预处理;采用连续投影算法(Successive Projection Algorithm,SPA)和竞争性自适应加权算法(Competitive Adaptive Reweighted Sampling,CARS)进行特征波长提取;最后利用灰狼优化算法(Grey Wolf Optimization,GWO)优化支持向量回归模型(Support Vector Regression,SVR)建立了樱桃番茄SSC的最优预测模型。结果表明,使用SNV算法预处理后的光谱建立的预测模型的校正集和预测集的相关系数得到了明显改善。SNV-CARS-GWO-SVR模型是樱桃番茄的最佳预测模型,预测集均方根误差(Root Mean Square Error of Prediction set,RMSEP)为0.28,残差预测偏差(Residual Predictive Deviation,RPD)为2.75。利用自行搭建的搭建了光纤光谱透射检测系统完全可以实现樱桃番茄SSC的检测,为不同成熟度番茄的SSC在线快速、无损检测提供了一种新的方法。 The soluble solids content(SSC)is a key parameter for evaluating the quality and maturity of cherry tomatoes.In this study,a fiber optic spectral transmission detection system was built to collect the raw spectral information of cherry tomatoes at different maturity levels.The SSCs of the samples were determined using physicochemical experiments,and the values were classified using the SPXY algorithm.Next,the raw spectra collected were preprocessed using standard normal variable(SNV)transformation.The successive projections algorithm(SPA)and competitive adaptive reweighted sampling(CARS)algorithm were used for characteristic wavelength extraction.Finally,the Grey Wolf optimization(GWO)algorithm was applied to optimize the support vector regression(SVR)model to build an optimal model for predicting the SSC of cherry tomatoes.The results showed significant improvement of the coefficients of the calibration and prediction sets of the established prediction model based on SNV-preprocessed spectra.The SNV-CARS-GWO-SVR model was the best model for predicting the SSC of cherry tomatoes,with a root-mean-square-error of the prediction set(RMSEP)value of 0.28 and residual predictive deviation(RPD)value of 2.75.In summary,this independently developed fiber optic spectral transmission detection system fully achieved the nondestructive detection of the SSC of cherry tomatoes,thus providing a new method for the rapid and nondestructive online detection of SSCs of cherry tomatoes at different maturity levels.
作者 高升 徐建华 王伟 解万翠 GAO Sheng;XU Jianhua;WANG Wei;XIE Wancui(School of Information and Control Engineering,Qingdao University of Technology,Qingdao 266520,China;AOC,Qingdao Jiaodong International Airport,Qingdao 266309,China;College of Marine Science and Biological Engineering,Qingdao University of Science and Technology,Qingdao 266042,China)
出处 《现代食品科技》 CAS 北大核心 2024年第8期320-326,共7页 Modern Food Science and Technology
基金 国家自然科学基金项目(31871863 32072302 32072348) 中央引导地方发展专项资金项目(YDZX2022176) 山东省自然基金项目(ZR2023QC114) 湖北省自然科学基金项目(2012FKB02910) 湖北省研究与开发计划项目(2011BHB016) 中央引导地方发展专项资金项目(YDZX2022176) 山东省科技型中小企业创新能力提升工程项目(2021TSGC1251 2023TSGC0389 2021TSGC0766)。
关键词 樱桃番茄 可溶性固体含量 光纤光谱技术 灰狼算法 无损检测 cherry tomato soluble solids content fiber optic spectroscopy grey wolf optimization nondestructive detection
  • 相关文献

参考文献10

二级参考文献76

  • 1袁雷明,高海宁,吕松,蔡健荣.可见/近红外光谱半透射法检测苹果中可溶性固形物含量[J].食品安全质量检测学报,2012,3(5):448-452. 被引量:14
  • 2刘燕德,应义斌,傅霞萍.近红外漫反射用于检测苹果糖度及有效酸度的研究[J].光谱学与光谱分析,2005,25(11):1793-1796. 被引量:78
  • 3马海波,董增川,张文明,梁忠民.SCE-UA算法在TOPMODEL参数优化中的应用[J].河海大学学报(自然科学版),2006,34(4):361-365. 被引量:49
  • 4刘纯青,杨莘元,张颖.基于文化算法的聚类分析[J].计算机应用,2006,26(12):2953-2955. 被引量:14
  • 5邓云,吴颖,李云飞.温度和相对湿度对采后葡萄浆果硬度的影响[J].食品科学,2007,28(3):46-49. 被引量:10
  • 6Hongdong Li,Yizeng Liang,Qingsong Xu,Dongsheng Cao.Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J].Analytica Chimica Acta.2009(1)
  • 7D. Lorente,N. Aleixos,J. Gómez-Sanchis,S. Cubero,O. L. García-Navarrete,J. Blasco.Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment[J].Food and Bioprocess Technology.2012(4)
  • 8Gamal Elmasry,Mohammed Kamruzzaman,Da-Wen Sun,Paul Allen.Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review[J].Critical Reviews in Food Science and Nutrition.2012(11)
  • 9Jiangbo Li,Wenqian Huang,Liping Chen,Shuxiang Fan,Baohua Zhang,Zhiming Guo,Chunjiang Zhao.SSJD14101300036330[J].Food Analytical Methods.2014(9)
  • 10SeyedAhmad Mireei,SeyedSaeid Mohtasebi,Morteza Sadeghi.Comparison Of Linear And Non-Linear Calibration Models For Non-Destructive Firmness Determining Of ‘Mazafati’ Date Fruit By Near Infrared Spectroscopy[J].International Journal of Food Properties.2014(6)

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部