期刊文献+

基于生成对抗网络的工业场景低质图像增强算法

Low-Quality Image Enhancement Algorithm for Industrial Scenes Based on Generative Adversarial Networks
下载PDF
导出
摘要 针对工业场景下图像模糊、分辨率低、边缘细节不明显等问题,提出一种基于生成对抗网络的低质图像增强算法。首先,设计退化网络获得与真实场景更为接近的低质图像,以此与现实高清图像获得特征映射关系;其次,在使用密集残差块(residual in residual dense block,RRDB)的基础上添加卷积注意力模块,增强RRDB网络的特征表达能力,以有效地捕获关键特征信息;最后,设计边缘增强网络模块结合改进的RRDB作为生成器,图像细节信息的捕捉与还原能力得到显著提升,并与判别器对抗生成更高质量的图像。实验结果表明,相较于现有常用的图像增强算法,所提算法能有效提升工业场景图像清晰度、保留图像细节并减少失真。定量指标峰值信噪比平均提升10.45%,结构相似性平均提升15.92%,运行速度快,能满足工业生产需求。 Aiming at the problems of image blurring,low resolution and unclear edge details in industrial scenes,this paper proposes a low-quality image enhancement algorithm based on generative adversarial networks.Firstly,the degraded network is designed to obtain low-quality images closer to the real scene,so as to obtain the feature mapping relationship with the real high-definition images.Secondly,on the basis of using residual in residual dense block(RRDB),a convolution attention module is added to enhance the feature expression ability of RRDB network,so as to effectively capture key feature information.Finally,the edge enhancement network module is designed and combined with the improved RRDB as the generator,the ability of capturing and restoring image detail information is significantly improved,and the higher quality image is generated by confrontation with the discriminator.The experimental results show that compared with the existing commonly used image enhancement algorithms,the proposed algorithm can effectively improve the clarity of industrial scene images,preserve image details and reduce distortion.The peak signal-to-noise ratio of the quantitative index is increased by 10.45%on average,and the structural similarity is increased by 15.92%on average.The operation speed is fast and can meet the needs of industrial production.
作者 叶旭辉 倪蔚恒 陈燕 尹芹凯 张道德 YE Xuhui;NI Weiheng;CHEN Yan;YIN Qinkai;ZHANG Daode(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China;School of Mechanical and Electrical Engineering,Wuhan Donghu University,Wuhan 430212,China)
出处 《组合机床与自动化加工技术》 北大核心 2024年第9期41-45,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金面上项目(52075152) 湖北省农机装备补短板核心技术应用攻关项目(HBSNYT202221)。
关键词 工业场景 退化 密集残差块 注意力 边缘增强 industrial scene degradation dense residual blocks attention edge enhancement
  • 相关文献

参考文献15

二级参考文献90

共引文献680

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部