期刊文献+

面向列车检修领域的知识图谱构建与应用

Construction and Application of Knowledge Graph for Train Maintenance Field
下载PDF
导出
摘要 [目的]知识图谱以其强大的语义处理能力和开放组织能力,为各个领域的知识化组织和智能应用奠定了基础。为了提高城市轨道交通列车检修业务的数字化和智能化水平,应建立面向列车检修领域的知识图谱。[方法]阐述了知识图谱技术的简介,采用自上而下的方法构建知识图谱。从本体设计、信息提取、知识映射、知识存储、知识融合5个方面分析了面向列车检修领域知识图谱的构建过程,并展望了该知识图谱在列车检修领域的应用前景。[结果及结论]基于该图谱,不仅能够有效解决列车检修数据竖井化问题,还可实现列车检修领域相关数据的统一管理,为列车检修提供“一车一档案”、智能检索、列车故障趋势分析等智能化服务。 [Objective]With its powerful semantic processing and open organization capabilities,the knowledge graph lays the foundation for knowledge-based organization and intelligent applications in various fields.In order to improve the digitization and intelligence level of urban rail transit train maintenance,a knowledge graph for the train maintenance field should be established.[Method]The knowledge graph technology is briefly introduced,and a top-down approach is adopted to construct the knowledge graph.The construction process of the knowledge graph for the train maintenance field is analyzed from five aspects,i.e.ontology design,information extraction,knowledge mapping,knowledge storage,and knowledge fusion.The outlook for the application of the knowledge graph in the field of train maintenance is described.[Result&Conclusion]Based on the above graph,not only can the problems of train maintenance data silos be effectively solved,but also the unified management of relevant data in the field of train maintenance can be realized,and intelligent services such as′one file for one train′,intelligent retrieval,and train fault trend analysis be provided for train maintenance.
作者 张俊杰 姜仕军 刘伟东 ZHANG Junjie;JIANG Shijun;LIU Weidong(CRRC Qingdao Sifang Rolling Stock Research Institute Co.,Ltd.,266031,Qingdao,China)
出处 《城市轨道交通研究》 北大核心 2024年第9期198-202,共5页 Urban Mass Transit
关键词 城市轨道交通 列车检修 知识图谱 本体设计 智能化检修 urban rail transit train maintenance knowledge graph ontology design intelligent maintenance
  • 相关文献

参考文献7

二级参考文献47

  • 1谭达全,邓冰湘.药膳食疗浅述[J].湖南中医杂志,2005,21(1):67-67. 被引量:8
  • 2姜吉发.一种事件信息抽取模式获取方法[J].计算机工程,2005,31(15):96-98. 被引量:27
  • 3杜文华.本体构建方法比较研究[J].情报杂志,2005,24(10):24-25. 被引量:37
  • 4梁健,吴丹.种子概念方法及其在基于文本的本体学习中的应用[J].图书情报工作,2006,50(9):18-21. 被引量:13
  • 5韩婕,向阳.本体构建研究综述[J].计算机应用与软件,2007,24(9):21-23. 被引量:50
  • 6Abreu D D, Flores A, Palma G, et al. Choosing Between Graph Databases and RDF Engines for Consuming and Mining Linked Data[J]. Cold, 2013.
  • 7Webber J. A Programmatic Introduction to Neo4j[J]. Addison Wesley Pub Co Inc, 2012:217-218.
  • 8Jouili S, Vansteenberghe V. An Empirical Comparisou of Graph Databases[C]. 2013.International Conference on Social Computing. IEEE Computer Society, 2013:708-715.
  • 9Haveliwala T H. Topic-Sensitive PageRank: a Context-Sensitive Ranking Algorithm for Web Search[J]. Knowledge & Data Engineering IEEE Transactions on, 2003, 15 (4):754-796.
  • 10Loper E, Bird S. NLTK: The Natural Language Toolkit[C]. Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics-Volume 1. Association for Computational Linguistics, 2002:63-70.

共引文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部