摘要
在赋范线性空间中讨论了集优化问题的适定性和稳定性.首先,给出集优化问题3种适定性的概念及其关系.其次,借助局部锥Lipschitz连续性并运用分析方法刻画了集优化问题的适定性.最后,研究了具锥Lipschitz连续性集值映射的参数集优化问题的Berge连续性和极小解映射的紧性.
The well-posedness and stability of set optimization problems are discussed in the normed vector space.Firstly,The concepts for three kinds of well-posedness to set optimization problems and their relations are given.Secondly,under the local cone Lipschitz continuity the well-posedness of set optimization problems is characterized by using the analytical method.Finally,the Berge semi-continuity and compactness of minimal solution mappings are studied for parametric set optimization involving the cone Lipschitz continuous set-valued mapping.
作者
孟旭东
MENG Xudong(Science College of Nanchang Hangkong University,Gongqingcheng 332020,Jiangxi,China)
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第5期801-810,共10页
Journal of Yunnan University(Natural Sciences Edition)
基金
江西省教育厅科学技术重点项目(GJJ181565,GJJ191614,GJJ218701)
南昌航空大学校级重点科学技术项目(KYKJ2108)
南昌航空大学校级自然科学基金(KYZK2301).