期刊文献+

具有防御能力的Leslie-Gower捕食食饵模型的平衡态正解分析

Analysis of positive equilibrium solutions of Leslie-Gowerpredator-prey model with defensive ability
下载PDF
导出
摘要 在Leslie-Gower捕食食饵模型中引入Monod-Haldane功能反应函数,研究齐次Dirichlet边界下食饵的防御能力对捕食系统平衡态正解的影响。利用极大值原理、上下解方法、分歧理论和稳定性理论等建立了平衡态正解的先验估计、存在的充要条件和局部稳定条件。结合数值模拟对平衡态正解进行定量分析。研究结果表明,只要食饵和捕食者的内禀生长率大于某个常数,就可产生共存模式。同时食饵防御能力会对捕食者产生抑制效应。特别地,当食饵具有较高生长率时,食饵抵御捕食者的能力更强。 Monod-Haldane functional response function is introduced into Leslie-Gower predator-prey model under the homogeneous Dirichlet boundary condition,the influence of the defensive ability of prey on the positive equilibrium solution of the predator-prey system is studied.A priori estimate,sufficient and necessary conditions for the existence and local stability of the positive equilibrium solution are established by using the maximum principle,the super and sub-solution method,bifurcation theory and stability theory.Combined with numerical simulation,the positive equilibrium solution is quantitatively analyzed.The research shows that as long as the intrinsic growth rate of prey and predator is greater than a certain constant,the coexistence mode can be generated.At the same time,the defense ability of prey has an inhibitory effect on the predator;especially when the prey has a higher growth rate,the ability of prey to resist the predator is stronger.
作者 王利娟 杨佳娆 姜洪领 金露 杨帆 WANG Lijuan;YANG Jiarao;JIANG Hongling;JIN Lu;YANG Fan(Institute of Mathematics and Information Science,Baoji University of Arts and Sciences,Baoji 721013,Shaanxi,China)
出处 《西安工程大学学报》 CAS 2024年第4期133-140,151,共9页 Journal of Xi’an Polytechnic University
基金 国家自然科学基金(61872227,12061081) 陕西省科技厅自然科学基础研究计划项目(2018JQ1066) 宝鸡文理学院校级研究生创新科研项目(YJSCX23YB30)。
关键词 Leslie-Gower捕食食饵模型 Monod-Haldane功能反应函数 平衡态正解 数值模拟 Leslie-Gower predator-prey model Monod-Haldane functional response function positive equilibrium solution numerical simulation
  • 相关文献

参考文献4

二级参考文献19

  • 1PENG Rui,WANG MingXin.Qualitative analysis on a diffusive prey-predator model with ratio-dependent functional response[J].Science China Mathematics,2008,51(11):2043-2058. 被引量:3
  • 2J.H. Wu.Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Analysis . 2000 (7)
  • 3M.A. Aziz-Alaoui,M. Daher Okiye.Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes[J].Applied Mathematics Letters.2003(7)
  • 4Yanling Tian,Peixuan Weng.Stability analysis of diffusive predator–prey model with modified Leslie–Gower and Holling-type III schemes[J]. Applied Mathematics and Computation . 2011 (7)
  • 5Crandall MG,Rabinowitz PH.Bifurcation from simple eigenvalues. Journal of Functional Analysis . 1971
  • 6LPEZ-GMEZ J.Spectral theory and nonlinear functional analysis. . 2001
  • 7Michael G. Crandall,Paul H. Rabinowitz.??Bifurcation, perturbation of simple eigenvalues, itand linearized stability(J)Archive for Rational Mechanics and Analysis . 1973 (2)
  • 8Jicai Huang,Shigui Ruan,Jing Song.??Bifurcations in a predator–prey system of Leslie type with generalized Holling type III functional response(J)Journal of Differential Equations . 2014 (6)
  • 9Hsu S B,Huang T W.Global stability for a class of predator-prey system. SIAM Journal on Applied Mathematics . 1995
  • 10Blat J,Brown KJ.Global bifurcation of positive solutions in some systems of elliptic equations. SIAM Journal on Mathematical Analysis . 1986

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部