摘要
随着风电、光伏等新能源接入比例的不断提高,源荷不确定性增强扩大了电力系统的运行灵活性需求。为准确量化电力系统的灵活性需求,制定兼顾灵活性与经济性的优化方案,提出了一种基于多面体不确定集合的电力系统灵活性量化评估方法。首先,采用多面体不确定集合量化多个光伏电站出力的波动性、不确定性及相关性特征,进而分析净负荷波动区间,构建电力系统灵活性需求量化模型。其次,基于仿射策略建立考虑灵活性需求的仿射可调鲁棒优化模型,并将所建立的鲁棒优化模型转化为混合整数线性规划模型进行求解。最后,基于6节点系统与IEEE 57系统,在不同不确定性场景下对比所提模型的优化结果,验证了该方法在系统的灵活性需求量化评估的有效性。
With the continuous increase in the proportion of renewable energy sources such as wind and solar PV integrated into the power system,the rise in source-load uncertainty has exacerbated the demand for operational flexibility within the grid.To accurately quantify this flexibility demand and devise an optimization scheme that balances both flexibility and economy,a quantification and assessment methodology for power system flexibility is proposed,based on polyhedral uncertainty sets.Firstly,the volatility,uncertainty,and correlation characteristics of multiple photovoltaic power stations'outputs are quantified using polyhedral uncertainty sets.Subsequently,the net load fluctuation interval is analyzed,and a quantification model for power system flexibility demand is constructed.Secondly,an affine adjustable robust optimization model that incorporates flexibility demands is established based on affine strategies.This robust optimization model is then transformed into a mixed-integer linear programming(MILP)model for solution.Finally,the optimization results of the proposed model are compared under different uncertainty scenarios using a 6-node system and the IEEE 57-bus system,verifying the effectiveness of the proposed methodology in quantifying and assessing system flexibility demands.
作者
孙东磊
王宪
孙毅
孟祥飞
张涌琛
张玉敏
SUN Donglei;WANG Xian;SUN Yi;MENG Xiangfei;ZHANG Yongchen;ZHANG Yumin(Economic&Technology Research Institute,State Grid Shandong Electric Power Company,Jinan 250021,China;College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China)
出处
《中国电力》
CSCD
北大核心
2024年第9期146-155,共10页
Electric Power
基金
国网山东省电力公司科技项目(520625230001)。
关键词
新能源
不确定性
运行灵活性
多面体不确定集合
仿射可调鲁棒优化
new energy
uncertainty
operational flexibility
polyhedral uncertainty sets
affine adjustable robust optimization