摘要
在数字经济时代,数字货币的出现吸引了诸多投资者与研究者,但其高波动性的价格特征,为投资决策和风险评估提出了新的挑战.为更准确地刻画这种特征,本文提出基于指数衰减加权自举法的区间变量置信域构建方法,进一步以此置信域的覆盖面积与尾部分位数作为评估数字货币市场波动率与尾部风险的新指标.以比特币为例的实证结果表明,首先,相比于传统点值模型如指数加权移动平均模型,区间变量置信域的覆盖面积能同时有效度量比特币价格的水平与极差的不确定性,这增加了对日内价格波动的度量.其次,在分析尾部风险预测效果时,相比于历史模拟法和指数加权移动平均模型预测的在险价值,区间变量置信域生成的尾部分位数在条件覆盖率与非条件覆盖率检验上的表现更优.此外,本文提出的基于指数衰减加权的自举法更有效地刻画市场的非正态分布与时变性的特征.本研究不仅为数字货币的波动分析贡献了一种新的统计工具,而且为金融市场的尾部风险管理提供了新方法和新视角.
In the digital economy,the emergence of digital currencies has attracted considerable attention from both investors and researchers.However,their high volatility characteristics present new challenges in investment decision-making and risk assessment.To capture the characteristics comprehensively,this paper proposes a novel approach for constructing confidence regions for interval-valued variables based on the exponentially decay weighted bootstrap.The coverage area of the confidence regions and tail quantiles provide new indicators for assessing the volatility and tail risks in the market.Empirical results using Bitcoin as a case study demonstrate the proposed approach outperforms other traditional point-based methods such as exponential weighted moving average in measuring the uncertainty and intraday price volatility.Furthermore,the derived tail quantiles exhibit superior predictive performance for tail risk compared to Value-at-risk methods and the exponential weighted moving average,as evidenced by various tests.The proposed methodology not only contributes a new statistical tool for analyzing digital currency volatility but also provides novel perspectives for extreme risk management in financial markets.
作者
张丁漩
孙玉莹
洪永淼
ZHANG Dingxuan;SUN Yuying;HONG Yongmiao(School of Economics and Management,MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation,University of Chinese Academy of Sciences,Beijing 100190,China;Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China)
出处
《计量经济学报》
CSCD
2024年第4期879-898,共20页
China Journal of Econometrics
基金
国家自然科学基金(72322016,72073126,72091212,71973116)
国家自然科学基金“计量建模与经济政策研究”基础科学中心项目(71988101)。
关键词
区间数据
数字货币
置信域
波动性
尾部风险
interval-valued data
digital currency
confdence region
volatility
tail risk