期刊文献+

基于交叉熵金鹰优化算法的室内可见光定位

Indoor Visible Light Positioning Based on Cross-entropy Golden Eagle Optimization Algorithm
下载PDF
导出
摘要 为改善金鹰算法在求解室内可见光定位问题时的优化能力,基于重要度抽样技术和Kullback-Leibler距离的交叉熵(CE)方法,提出1种新的交叉熵金鹰优化(CEGEO)算法。将交叉熵方法融合到金鹰优化(GEO)算法中,通过协同演化获得的新种群更新抽样概率分布参数,加速算法的迭代进程,降低抽样样本数和计算成本,提高算法的全局优化能力;同时,采用共同更新得到更好的个体,大幅度增加种群的多样性,改善算法的收敛速度。采用CEGEO算法及其他4种算法对标准测试函数和室内可见光定位优化问题进行仿真实验,比较分析CEGEO算法的性能。结果表明:与其他4种算法相比,提出的CEGEO算法具有更高的求解精度和更快的收敛速度,能有效平衡全局和局部搜索能力,寻优能力更强;在室内可见光定位中定位精度小于2.74E-12cm,估计位置误差最小,平均误差接近2.07E-15cm,CEGEO算法是1种解决室内可见光定位优化问题的有效算法。 To improve the optimization ability of the golden eagle optimization(GEO)algorithm in solving indoor visible light positioning problems,a new cross-entropy golden(CE)eagle optimization(CEGEO)algorithm was proposed based on the importance sampling technique and the Kullback-Leibler distance CE method.Integrating the cross entropy method into the golden eagle optimization(GEO)algorithm,the sampling probability distribution parameters were updated by a new population obtained through collaborative evolution to accelerate the iterative process of the algorithm,and reduce the number of sampling samples and computational costs,and the global optimization capability of the algorithm was improved.Meanwhile,better individuals were obtained through common updates to significantly increase the diversity of the population,and improve the convergence speed of the algorithm.Simulation experiments on standard test functions and indoor visible light positioning optimization problems were conducted using CEGEO algorithm and four other algorithms to compare and analyze the performance of CEGEO algorithm.The results show that compared with the other four algorithms,the proposed CEGEO algorithm has higher solving accuracy and faster convergence speed,can effectively balance global and local search capabilities,and has stronger optimization ability.In indoor visible light positioning,the positioning accuracy is less than 2.74E-12 cm,the estimated position error is the smallest,and the average error is close to 2.07E-15 cm,which is an effective algorithm for solving the optimization problem of indoor visible light positioning.
作者 杨洋 李国成 贾朝川 YANG Yang;LI Guocheng;JIA Chaochuan(College of Electronic and Information Engineering,West Anhui University,Lu'an 237012,China;College of Finance and Mathematics,West Anhui University,Lu'an 237012,China)
出处 《安徽工业大学学报(自然科学版)》 CAS 2024年第5期525-534,共10页 Journal of Anhui University of Technology(Natural Science)
基金 安徽省大别山中医药研究院开放课题基金项目(TCMADM-2024-07) 皖西学院校级自然重点项目(WXZR202102,WXZR202103)。
关键词 金鹰优化算法 交叉熵 协同演化 可见光定位 可见光通信 golden eagle optimization algorithm cross entropy collaborative evolution visible light positioning visible light communication
  • 相关文献

参考文献8

二级参考文献56

  • 1赵亮,付兴武,徐广明.基于遗传算法的PID控制及其MATLAB仿真[J].微计算机信息,2004,20(5):19-20. 被引量:20
  • 2Iruthayarajan M, Willjuice Baskar S. Optimization of PID parameters using genetic algorithm and particle swarm optimization[C]. IET-UK Int Conf on Information and Communication Technology in Electrical Sciences, 2007: 81- 86.
  • 3Zdravko I Botev, Dirk P Kroese. The generalized cross entropy method, with applications to probability density estimation[J]. Methodology and Computing in Applied Probability, 2011, 13(1): 1-27.
  • 4Zdravko I Botev, Dirk P Kroese. An efficient algorithm for rare-event optimization, probability estimation, combinatorial and counting[J]. Methodology and Computing in Applied Probability, 2008, 10(4): 471-505.
  • 5Botev Z I, Kroese D P, Taimre T. Generalized cross-entropy methods with applications to rare-event simulation and optimization[J]. Simulation, 2007, 83: 785-806.
  • 6Kroese D P, Rubinstein R Y, Porotsky S. The cross-entropy method for continuous multiextremal optimization methodology and computing[J]. Applied Probability, 2006, 8(6): 383-407.
  • 7Rubinstein R Y, Kroese D E The cross-entropy method: An unified approach to Monte Carlo simulation randomized optimization and machine learning[M]. New York: Springer-Verlag, 2004.
  • 8陈丹,方康玲,陈乔礼.遗传算法在PID参数优化中的应用[J].微计算机信息,2007,23(03S):35-36. 被引量:22
  • 9刘杨,田学锋,詹志辉.粒子群优化算法惯量权重控制方法的研究[J].南京大学学报(自然科学版),2011,47(4):364-371. 被引量:29
  • 10王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:351

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部