期刊文献+

基于随机森林的导弹命中预测与因素分析

Missile Hit Prediction and Factor Analysis Based on Random Forest
下载PDF
导出
摘要 论文提出了一种基于随机森林算法的导弹命中预测和因素分析模型,旨在提高导弹命中率并找出影响命中结果的关键因素。该模型应用于实际导弹打击事件的预测,并通过与实际结果的对比验证了其准确性和可靠性,进一步证明了其在空空导弹发射命中预测工程中的应用潜力。此外,通过对关键因素的合理性分析,为提高装备测试性能水平提供了有价值的对策和建议。 This paper presents a missile hit prediction and factor analysis model based on the random forest algorithm,aiming to improve missile accuracy and identify key factors affecting the hit result.The model is applied to predict actual missile strike events,and its accuracy and reliability have been validated through a comparison with real-world results,further demonstrating its potential application in air-to-air missile launch hit prediction engineering.Additionally,through a rational analysis of the key fac-tors,valuable strategies and recommendations are provided to improve equipment testing performance.
作者 于水游 张大利 谢岑超 YU Shuiyou;ZHANG Dali;XIE Cenchao(Aviation Military Representative Office in Tianjin of Amry Armaments Department,Tianjin 300308)
出处 《舰船电子工程》 2024年第7期142-146,共5页 Ship Electronic Engineering
关键词 随机森林 导弹命中预测素 Gini指数 因素分析 random forest missile hit prediction Gini index factor analysis
  • 相关文献

参考文献13

二级参考文献71

  • 1李霞,张田文,郭政.一种基于递归分类树的集成特征基因选择方法[J].计算机学报,2004,27(5):675-682. 被引量:26
  • 2唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 3谷雨,徐宗本,孙剑,郑锦辉.基于PCA与ICA特征提取的入侵检测集成分类系统[J].计算机研究与发展,2006,43(4):633-638. 被引量:25
  • 4刘克龙,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究[J].计算力学学报,2006,23(3):344-347. 被引量:34
  • 5Huang G B, Zhu Q Y, Siew C K. Extreme learning machine:theory and application [ J 3. Neurocomputing,2006,70 ( 1 - 3 ) :489 - 501.
  • 6Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey [ J]. International Journal of Machine Learning and Cybernetics,2011, 2(2) : 107 - 122.
  • 7Zhou Z H,Wu J,Tang W. Ensembling neural networks:many could be better than all [ J ]. Artificial intelligence ,2002,137 ( 1 ) : 239 - 263.
  • 8Bartlett P L. The sample complexity of pattern classification with neural networks:the size of the weights is more important than the size of the network [ J]. IEEE Transactions on Information Theory, 1998,44 ( 2 ) : 525 - 536.
  • 9Shipp C A, Kuneheva L I. Relationships between combination methods and measures of diversity in combining classifiers [ J ]. Information Fu- sion,2002,3 (2) : 135 - 148.
  • 10Yang J, Yang J Y, Zhang D, et al. Feature fusion : parallel strategy vs. serial strategy [ J ]. Pattern Recognition,2003,36 ( 6 ) : 1369 - 1381. .

共引文献319

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部