摘要
为了提高高压电气设备绝缘性能的检测准确性,设计了一种基于机器视觉的自动化检测系统。该系统首先通过工业相机捕获绝缘设备表面的图像,然后应用目标检测算法进行分析,以实现对绝缘缺陷的精确识别。此外,系统还采用了双目立体视觉技术对缺陷进行精确定位和尺寸测量。结果表明,该系统能够有效识别绝缘设备表面的破损和污秽,为电力设备的安全运行和维护管理提供了有力的技术支持。
To enhance the accuracy of insulation performance testing for high-voltage electrical equipment,this study has designed an automated detection system based on machine vision.The system initially captures images of the insulation surface of the equipment using an industrial camera,followed by analysis with a target detection algorithm to precisely identify insulation defects.Additionally,the system employs binocular stereo vision technology for accurate defect localization and dimension measurement.Results demonstrate that the system can effectively recognize defects such as damage and contamination on the surface of insulating equipment,providing robust technical support for the safe operation and maintenance management of electrical equipment.
作者
谭美玲
TAN Meiing(State Grid Anshan Power Supply Company,Anshan,Liaoning 114000,China)
出处
《自动化应用》
2024年第17期135-137,共3页
Automation Application
关键词
电气设备
绝缘
机器视觉
自动化检测
electrical equipment
insulation
machine vision
automated detection