期刊文献+

基于图卷积时空生成对抗网络的城市交通估计

Urban Traffic Estimation Based on Graph Convolution Spatiotemporal GAN
下载PDF
导出
摘要 在城市道路部署前估计路网的交通流量极具挑战性,为了解决这个难题,提出了一种新的条件城市交通生成对抗网络(Curb-GAN)模型,利用条件生成对抗网络(CGAN)生成城市交通流量数据.首先,把路网各节点的距离关系和外部特征信息作为条件处理,来控制生成结果;其次,利用图卷积网络(GCN)捕获路网的空间自相关性,利用自注意力机制(SA)和门控循环单元(GRU)捕获不同时隙交通的时间依赖性;最后,由训练好的生成器生成交通流量数据.在两个真实时空数据集上的大量实验表明,Curb-GAN模型的估计精度优于主要的基线方法,并且可以产生更有意义的估计. It is very challenging to estimate the traffic flow before urban road deployment.To solve this problem,this study proposes a new conditional urban traffic generating adversarial network(Curb-GAN)model,which utilizes a conditional generating adversarial network(CGAN)to generate urban traffic flow data.Firstly,the distance relationship and external feature information of each node of the road network are treated as conditions to control the generated results.Secondly,the spatial autocorrelation of the road network is captured by the graph convolutional network(GCN),and the time dependence of traffic in different time slots is captured by the self-attention(SA)mechanism and gated cycle unit(GRU).Finally,the trained generator generates traffic flow data.A large number of experiments on two real spatiotemporal datasets show that the estimation accuracy of the Curb-GAN model is superior to the main baseline methods and can produce more meaningful estimates.
作者 许明 邬天财 金海波 XU Ming;WU Tian-Cai;JIN Hai-Bo(Software College,Liaoning Technical University,Huludao 125105,China)
出处 《计算机系统应用》 2024年第9期123-131,共9页 Computer Systems & Applications
基金 国家自然科学基金(62173171)。
关键词 生成对抗网络 自注意力机制 门控循环单元 图卷积网络 交通估计 generative adversarial network(GAN) self-attention mechanism gated recurrent unit(GRU) graph convolutional network(GCN) traffic estimation
  • 相关文献

参考文献2

二级参考文献17

  • 1黄海军.城市交通网络动态建模与交通行为研究[J].管理学报,2005,2(1):18-22. 被引量:13
  • 2尚宁,覃明贵,王亚琴,崔中发,崔岩,朱扬勇.基于BP神经网络的路口短时交通流量预测方法[J].计算机应用与软件,2006,23(2):32-33. 被引量:31
  • 3LU JIAN-CHANG, NIU DONG-XIAO, JIA ZHENG-YUAN. A study of short-term load forecasting based on ARIMA-ANN [ C]// Proceedings of the 3rd International Conference on Machine Learning and Cybernetics. [ S.l. ] : IEEE Press, 2004:3183 -3187.
  • 4WANG YI-BING, PAPAGEORGIOU M, MESSMER A. Real-time freeway traffic state estimation based on extended Kalman filter: A general approach [J]. Transportation Research, 2007, 41(2): 167 -181.
  • 5XIE HONG, LIU ZHONG-HUA. Short-term traffic flow prediction based on embedding phase-space and blind signal separation [ C]// Proceedings of the 2008 IEEE Conference on Cybernetics and Intelligent Systems. [S. l. ] : IEEE Press, 2008:760 -764.
  • 6STATHOPOULOS A, KARLAFTIS M G. A multivariate state space approach for urban traffic flow modeling and prediction [ J]. Transportation Research, 2003, 11 (2) : 121 - 135.
  • 7KAMARIANAKIS Y, PRASTACOS P. Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches [ J]. Transportation Research Record, 2003, 1857: 74 - 84.
  • 8COMON P. Independent component analysis - A new concept? [ J]. Signal Processing, 1994, 36(3) : 287 -314.
  • 9BELL A J, SEJNOWSKI T J. An information-maximization approach to blind separation and blind deconvolution [ J]. Neural Computation, 1995, 7(6): 1129-1159.
  • 10HYVARINEN A, OJA E. A fast fixed-point algorithm for independent component analysis [ J]. Neural Computation, 1997, 9 (7) : 1483 - 1492.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部