期刊文献+

RGBT多模态视觉跟踪方法综述 被引量:1

Survey of RGBT Multimodal Visual Tracking Methods
下载PDF
导出
摘要 RGBT视觉跟踪是指融合可见光和热红外多模态图像信息进行视觉跟踪的新兴热点研究课题,合理融合可见光和热红外图像的互补信息可以提高跟踪器的性能和鲁棒性;人工智能技术的发展推动了RGBT多模态视觉跟踪的发展,深度学习技术逐渐代替传统目标跟踪方法,在精确度与速度方面更具有优势;对近年来RGBT多模态视觉跟踪进行了全面综述,整理了RGBT多模态视觉跟踪的发展历程,归纳和讨论了相关算法,具体包括基于相关滤波的方法和基于深度学习的方法;回顾了RGBT多模态视觉跟踪数据集的发展历史,介绍了算法性能评估指标,分析了不同方法在评估数据集上的性能,展望了RGBT多模态视觉跟踪的未来研究趋势;旨在为相关研究者提供全面的概览和参考,以促进RGBT多模态视觉跟踪领域的研究和发展。 RGB thermal(RGBT)visual tracking is an emerging hot research topic on visual tracking,it fuses visible and thermal infrared multimodal image information,and the reasonable fusion of complementary information of visible and thermal infrared images can improve the performance and robustness of trackers.Artificial intelligence technology has promoted the development of RGBT multimodal visual tracking,and deep learning technology gradually replaces traditional target tracking methods,with more advantages of accuracy and speed.Comprehensively overview the development of RGBT multimodal visual tracking,summarize and discuss related algorithms,specifically including correlation filtering-based methods and deep learning-based methods,review the development history of RGBT multimodal visual tracking datasets,introduce algorithm performance evaluation indexes,analyze the performance of different algorithms on evaluation datasets,and look forward to the future research trends of RGBT multimodal visual tracking methods.This paper aims to provide a comprehensive overview and reference for related researchers to promote research and development in RGBT multimodal vision tracking fields.
作者 杨晓丽 张馨月 于涛 高鹏 王茂励 YANG Xiaoli;ZHANG Xinyue;YU Tao;GAO Peng;WANG Maoli(School of Cyber Science and Engineering,Jining Normal University,Jining 273165,China)
出处 《计算机测量与控制》 2024年第9期1-8,35,共9页 Computer Measurement &Control
基金 中国博士后科学基金面上资助项目(2023M732022) 山东省自然科学基金青年基金项目(ZR2021QF061) 广东省自然科学基金面上项目(2020A1515010706) 曲阜师范大学科研基金项目(167-602801)。
关键词 计算机视觉 RGBT视觉跟踪 信息融合 相关滤波 深度学习 computer vision RGBT visual tracking information fusion correlation filter deep learning
  • 相关文献

参考文献1

二级参考文献211

  • 1Ta D N, Chen W C, Gelfand N, Pulli K. Surftrac: efficient tracking and continuous object recognition using local feature descriptors. In: Pro?ceedings of IEEE Conference on Computer Vision and Pattern Recog?nition.2009,2937-2944.
  • 2Skrypnyk I, Lowe D G. Scene modelling, recognition and tracking with invariant image features. In: Proceedings of IEEE and ACM In?ternational Symposium on Mixed and Augmented Reality. 2004, 110- 119.
  • 3Chau D P, Bremond F, Thonnat M. Object tracking in videos: ap?proaches and issues. 2013, arXiv preprint arXiv: 1304.5212.
  • 4Ko T. A survey on behavior analysis in video surveillance for home?land security applications. In: Proceedings of the 37th IEEE Applied Imagery Pattern Recognition Workshop. 2008,1-8.
  • 5Ess A, Schindler K, Leibe B, Van Gool L. Object detection and track?ing for autonomous navigation in dynamic environments. The Interna?tional Journal of Robotics Research, 2010, 29: 1707-1725.
  • 6Mistry P, Maes P. SixthSense: a wearable gestural interface. In: Pro?ceedings of ACM SIGGRAPH ASIA 2009 Sketches. 2009, II.
  • 7Bradski G R. Real time face and object tracking as a component of a perceptual user interface. In: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision. 1998, 214-219.
  • 8Zhu Z, Ji Q. Eye gaze tracking under natural head movements. In: Pro?ceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 918-923.
  • 9Kim I, Choi H S, Yi K M, Choi J Y, Kong S G. Intelligent visual surveillance - a survey. International Journal of Control, Automation and Systems, 2010, 8(5): 926-939.
  • 10Siemens S. Sistore CX EDS-intelligent video detection system. Tech?nical Report. 2008.

共引文献9

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部