摘要
本文研究了一种基于卷积注意力机制模块(CBAM)与门控循环单元网络(GRU)结合的CBAM-GRU分类模型,用于非合作通信系统中的自动调制识别技术。将信号预处理后的时域幅度值、相位值以及I/Q值合并,转换为输入采样值矩阵,进入网络进行信号分类识别。使用无线电数据集RadioML2016.10a进行仿真实验,并将CBAM-GRU模型与卷积神经网络(CNN)、长短期记忆网络(LSTM)、GRU、卷积长短时深度神经网络(CLDNN)进行比较。实验结果表明:CBAM-GRU模型的分类识别率达到92.79%,相较于对比模型分别提高了8.52%、1.84%、1.75%、8.61%,比传统的CNN或LSTM模型,在处理信号时能够更有效地捕捉时空特征,从而提高识别精度。
A CBAM-GRU classification model based on the combination of Convolutional Attention Mechanism Module(CBAM)and Gated Recurrent Unit(GRU)network is investigated for automatic modulation identification in non-cooperative communication systems.The pre-processed time-domain amplitude,phase and I/Q values of the signal are combined and converted into a matrix of input sample values,which are entered into the network for signal classification and identification.Simulations are conducted using the RadioML2016.10a radio dataset,and the CBAM-GRU model are compared with the Convolutional Neural Network(CNN),Long Short-Term Memory network(LSTM),GRU,and Convolutional Long Deep Neural Network(CLDNN).The results indicates that the classification accuracy of the CBAM-GRU model reaches 92.79%,showing improvements of 8.52%,1.84%,1.75%,and 8.61%over the comparison models respectively.Compared to traditional CNN or LSTM models,the CBAM-GRU model is more effective in capturing spatio-temporal features of sig-nals,thereby enhancing recognition accuracy.
作者
杨宵
姚爱琴
孙运强
石喜玲
张婉婷
YANG Xiao;YAO Aiqin;SUN Yunqiang;SHI Xiling;ZHANG Wanting(School of Information and Communication,North University of China,Taiyuan 030051)
出处
《遥测遥控》
2024年第5期73-81,共9页
Journal of Telemetry,Tracking and Command
基金
山西省基础研究计划资助项目(20210302123062)。
关键词
自动调制识别
非合作通信系统
卷积注意力机制
门控循环单元网络
Automatic modulation recognition
Non-cooperative communication systems
Convolutional block attention mechanism
Gated recurrent unit network