期刊文献+

一类具有正初始能量的双重退化方程解的爆破和爆破时间上界估计

Blow-up and upper bounds of blow-up time fora doubly degenerate equation with positive initial energy
下载PDF
导出
摘要 研究了具有齐次Dirichlet边界条件的双重退化抛物方程u t=div(|Δu^(m)|^(p-2)Δu^(m))+f(u),x∈Ω,t≥0解的爆破问题.利用构造凸函数的方法,证明了f在适当的条件下,r>p>2,m≥1,初始能量为正时,解在有限时刻爆破,并给出了爆破时间的上界估计.该结论推广了已有结果. This paper deals with the blow-up of solutions to the following doubly degenerate parabolic equation u t=div(|Δu^(m)|^(p-2)Δu^(m))+f(u),x∈Ω,t≥0,with homogeneous Dirichlet boundary condition.A blow-up result is established when the initial energy is positive,r>p>2,m≥1,and under suitable conditions on f.Furthermore,a upper bound for blow-up time is also given.This result extends existing results.
作者 吴秀兰 赵雅鑫 杨晓新 成立波 WU Xiu-lan;ZHAO Ya-xin;YANG Xiao-xin;CHENG Li-bo(School of Mathematics and Statistics,Changchun University of Science and Technology,Changchun 130022,China)
出处 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第3期22-26,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(12171054).
关键词 爆破 双重退化 正初始能量 爆破上界 blow-up doubly degenerate positive initial energy upper bound of blow-up
  • 相关文献

参考文献1

二级参考文献7

  • 1王建,高文杰.具非线性边值条件的发展型p-Laplace方程解在有限时刻的爆破性和有界性[J].吉林大学学报(理学版),2005,43(4):395-401. 被引量:6
  • 2ZHAO Jun-ning.Existence and nonexistence of solutions for ut=div(|▽u|^p-2▽u)+f(▽u,u,x,t)[J].J.Math.Anal.Appl.,1993,172:130-146.
  • 3LEVINE H,PARK S,SERRIN J.Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type[J].J.Differential.Equations,1998,142:212-229.
  • 4MESSAOUDI S A.A note on blow up of solutions of a quasilinear beat equation with vanishing initial energy[J].J.Math.Anal.Appl.,2002,273:243-247.
  • 5WANG Jing,WANG ze-jia,YIN Jing-xue.A class of degenerate diffusion equations with mixed boudary conditions[J].J.Math.Anal.Appl.,2004,298:589-603.
  • 6LADYZENSKAJA O A,SOLONIKOV V A,URALTSEVA N N.Linear and Quasilinear Equation of Parabolic Type[M].Translations of Mathematical Monographs,Vol.23 American Mathematical Society,Providence,R.I.1967.
  • 7ZHONG Cheng-kui,FAN Xian-ling,CHEN Wen-yuan.Nonlinear Functional Analysis[M].Lanzhou University Press,1998.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部