摘要
研究了具有齐次Dirichlet边界条件的双重退化抛物方程u t=div(|Δu^(m)|^(p-2)Δu^(m))+f(u),x∈Ω,t≥0解的爆破问题.利用构造凸函数的方法,证明了f在适当的条件下,r>p>2,m≥1,初始能量为正时,解在有限时刻爆破,并给出了爆破时间的上界估计.该结论推广了已有结果.
This paper deals with the blow-up of solutions to the following doubly degenerate parabolic equation u t=div(|Δu^(m)|^(p-2)Δu^(m))+f(u),x∈Ω,t≥0,with homogeneous Dirichlet boundary condition.A blow-up result is established when the initial energy is positive,r>p>2,m≥1,and under suitable conditions on f.Furthermore,a upper bound for blow-up time is also given.This result extends existing results.
作者
吴秀兰
赵雅鑫
杨晓新
成立波
WU Xiu-lan;ZHAO Ya-xin;YANG Xiao-xin;CHENG Li-bo(School of Mathematics and Statistics,Changchun University of Science and Technology,Changchun 130022,China)
出处
《东北师大学报(自然科学版)》
CAS
北大核心
2024年第3期22-26,共5页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(12171054).
关键词
爆破
双重退化
正初始能量
爆破上界
blow-up
doubly degenerate
positive initial energy
upper bound of blow-up