期刊文献+

基于BiLSTM和CNN的序贯三支情感分类模型研究

Research on sequential three⁃way sentiment classification model based on BiLSTM and CNN
下载PDF
导出
摘要 文本情感分析作为自然语言处理领域中的一个重要分支,在现实生活中具有重要的应用价值.传统深度学习模型在情感分析中主要根据概率值大小进行硬分类,忽略了极性不明显数据的影响,导致阈值边缘对象的分类准确率欠佳.为了解决这一问题,基于CNN(Convolutional Neural Networks)和BiLSTM(Bi-directional Long Short-Term Memory)模型,并引入序贯三支决策(Sequential Three-way Decisions,S3WD)的思想,提出了基于BiLSTM和CNN的序贯三支情感分类模型(BiLCNN-S3WD),该模型能更好地从多个粒度对极性不明显数据进行处理.通过在online_shopping_10_cat和微博数据集上进行多组实验与对比分析,验证了所提模型的有效性.实验结果表明,与七个基线模型相比,BiLCNN-S3WD在三个数据集上的每个评价标准都取得了更佳的效果. Text sentiment analysis is an important branch of natural language processing with significant application value.Traditional deep learning models in sentiment analysis mainly perform hard classification based on the size of probability values,neglecting the impact of the data with inconspicuous polarity and resulting in poor accuracy of the classification for threshold edge objects.Based on CNN(Convolutional Neural Networks)and BiLSTM(Bi⁃directional Long Short⁃Term Memory),we propose the BiLCNN⁃S3WD based on BiLSTM and CNN,by introducing the idea of S3WD(Sequential Three⁃way Decisions),which better processes the data with inconspicuous polarity from multiple granularities.The model's effectiveness is verified through multiple sets of experiments and comparative analyses on the online_shopping_10_cat and Weibo datasets.According to the experimental results,BiLCNN⁃S3WD achieves better results in each evaluation criterion on the three datasets compared with the seven baseline models.
作者 赵梦宇 孙京博 魏遵天 辛现伟 宋继华 Zhao Mengyu;Sun Jingbo;Wei Zuntian;Xin Xianwei;Song Jihua(School of Artificial Intelligence,Beijing Normal University,Beijing,100875,China;College of Computer and Information Engineering,Henan Normal University,Xinxiang,453007,China)
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期502-510,共9页 Journal of Nanjing University(Natural Science)
基金 河南省高等学校重点科研项目(24A520019) 2023年国际中文教育研究课题(23YH26C) 教育部人文社会科学重点研究基地重大项目(22JJD740017) 河南省科技攻关项目(232102210077)。
关键词 序贯三支决策 情感分类 CNN BiLSTM 多粒度 sequential three⁃way decisions sentiment classification CNN BiLSTM multi⁃granularity
  • 相关文献

参考文献10

二级参考文献89

  • 1LingZhang,BoZhang.A Quotient Space Approximation Model of Multiresolution Signal Analysis[J].Journal of Computer Science & Technology,2005,20(1):90-94. 被引量:19
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3WANG Guo-yin,HU Feng,HUANG Hai,WU Yu.A Granular Computing Model Based on Tolerance relation[J].The Journal of China Universities of Posts and Telecommunications,2005,12(3):86-90. 被引量:9
  • 4Yiyu,(Y.Y.),Yao.Three Perspectives of Granular Computing[J].南昌工程学院学报,2006,25(2):16-21. 被引量:19
  • 5王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报,2007,2(6):8-26. 被引量:111
  • 6PANG B, LEE L, VAITHYANATHAN S. Thumbs up?: sentiment classification using machine learning techniques [ C]//Proceedings of the ACL-02 conference on Empiri-cal methods in natural language processing-Volume 10. Philadelphia, USA: Association for Computational Lin- guistics, 2002:79-86.
  • 7PANG B, LEE L. A sentimental education: Sentiment analysis using subjectivity summarization based on mini- mum cuts [ C ]//Proceedings of the 42nd Annual meeting on Association for Computational Linguistics. Barcelona, Spain: Association for Computational Linguistics, 2004: 271.
  • 8BACCIANELLA S, ESULI A, SEBASTIANI F. Senti- WordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining [C]//Proceedings of the In- ternational Conference on Language Resources and Evalu- ation ( LREC ). Valletta, Malta : LREC, 2010:2200-2204.
  • 9TABOADA M, BROOKE J, TOFILOSKI M, et al. Lex- icon-based methods for sentiment analysis[ J ]. Computa- tional Linguistics, 2011, 37(2): 267-307.
  • 10TURNEY P D. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of re- views[ C]//Proceedings of the 40th annual meeting on association for computational linguistics. Philadelphia, USA: Association for Computational Linguistics, 2002: 417424.

共引文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部