摘要
阐述一种基于深度学习的模型,通过分析患者的个人特征、治疗记录和其他相关因素,来预测其医疗资源消耗和医疗资源使用数量。从结果看,该模型的F1-score明显优于基准模型,针对医院日常数据的重要分类最高准确性达到91%,表明模型具有一定的实用性。
This paper describes the use of a deep learning based model to predict the consumption and usage of medical resources by analyzing patients'personal characteristics,treatment records,and other relevant factors.From the results,the F1 score of the model is significantly better than the benchmark model,with the highest accuracy of 91% for important classification of daily hospital data,indicating that the model has certain practicality.
作者
徐珂
XU Ke(Jing'an Central Hospital,Shanghai 200040,China)
出处
《电子技术(上海)》
2024年第6期108-111,共4页
Electronic Technology
关键词
大数据技术
数据驱动
深度学习
医疗资源消耗分析
医院信息管理
big data technology
data-driven
deep learning
analysis of medical resource consumption
hospital information management