摘要
近年来,人工智能(artificial intelligence,AI)技术发展突飞猛进,被广泛应用于医学、药学等多个领域,加速了药物研发的进程。本文聚焦AI在先导化合物发现与优化环节的应用,详细介绍了AI辅助虚拟筛选以及分子生成方法发现先导化合物,特别是AI驱动药物进入临床试验的应用案例,同时简略阐述AI基本算法模型在定量构效关系(quantitative structure-activity relationship,QSAR)和药物重定位中的应用,为基于AI的药物发现提供参考。
In recent years,artificial intelligence(Al)technology has advanced rapidly and has been widely applied in various fields such as medicine and pharmacy,accelerating the drug development process.Focusing on the application of Al in the discovery and optimization of lead compounds,this review provides a detailed introduction to Al-assisted virtual screening and molecular generation methods for discovering lead compounds,while particularly highlighting the cases of Al-drived drugs into clinical trials.Additionally,we briefly outline the application of AI basic algorithm models in quantitative structure-activity relationship(QSAR)and drug repurposing,offering insights for Al-based drug discovery.
作者
李紫玥
丛开源
吴诗琪
朱启华
徐云根
邹毅
LI Zi-yue;GONG Kai-yuan;WU Shi-qi;ZHU Qi-hua;XU Yun-gen;ZOU Yi(School of Pharmacy,China Pharmaceutical University,Nanjing 211198,China)
出处
《药学学报》
CAS
CSCD
北大核心
2024年第9期2443-2453,共11页
Acta Pharmaceutica Sinica
基金
中国药科大学教学改革研究课题(2023XJQN16)。
关键词
人工智能
药物发现
先导化合物
虚拟筛选
分子生成
artificial intelligence
drug discovery
lead compound
virtual screening
molecular generation