期刊文献+

基于最大信息系数模型优化的江苏省工业企业指标数据分析

Analysis of industrial enterprise indicator data in Jiangsu Province based on maximum information coefficient model optimization
下载PDF
导出
摘要 2023年是《工业互联网创新发展行动计划(2021—2023年)》实施的最后一年。在多重政策背景下,如何通过“互联网+工业大数据”让工业企业对市场需求进行迅速了解并做出相关策略,是目前亟须解决的问题。文章首先介绍数据相关性常用模型,简要分析其特点,然后选取最大信息系数作为数据特征值度量进行模型优化。最后以2022年江苏统计年鉴工业企业主要经济指标作为数据集,得出分析结论。 2023 is the last year of the implementation of the“Industrial Internet Innovation and Development Action Plan(2021-2023)”.In the context of multiple policies,an urgent problem arises of how to enable industrial enterprises to quickly understand the market demand and make relevant strategies through"Internet+industrial big data".This article first introduces common models for data correlation,briefly analyzes their characteristics,and then selects the maximum information coefficient as the data eigenvalue mea-surement for model optimization.Finally,a dataset is compiled based on the main economic indicators of industrial enterprises in the“2022 Jiangsu Statistical Yearbook”,and analytical conclusions are reached.
作者 郝诗佳 HAO Shijia(China Information Consulting&Designing Institute Co.,Ltd.,Nanjing 210019,China)
出处 《通信与信息技术》 2024年第5期99-102,共4页 Communication & Information Technology
关键词 工业大数据 最大信息系数 数据相关性 Industrial big data Maximal information coefficient(MIC) Data dependency
  • 相关文献

参考文献4

二级参考文献4

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部