摘要
基于稳定扩散算法,利用大规模数据集按照文本需求转化为特定艺术风格的模型。通过收集大量的训练数据,使用稳定扩散算法来训练一个深度神经网络,使其能够理解不同艺术风格的特征和细节。该模型能够在不丧失照片原始内容的情况下,将其转化为用户所选的艺术风格。实验结果显示,该模型在多种不同艺术风格下表现出色,并能够高效、准确地将照片进行艺术风格的转换。该方法在质量和速度上具有显著优势,在计算机视觉和图像处理领域具有广泛的应用前景。
Based on the Stable Diffusion algorithm,large‑scale data sets are used to transform into models of specific artistic styles according to text requirements.By collecting large amounts of training data,a deep neural network is trained using a stable diffusion algorithm,enabling it to understand the characteristics and details of different artistic styles.The model is able to trans‑form a photo into an artistic style of the user's choice without losing the original content.Experimental results show that the model performs well in a variety of different artistic styles and can convert photos to artistic styles efficiently and accurately.This method has significant advantages in quality and speed,and has broad application prospects in the fields of computer vision and image pro‑cessing.
作者
谢鑫鑫
任柳青
陈明相
Xie Xinxin;Ren Liuqing;Chen Mingxiang(School of Electric and Electronic Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Mathematics,Physics and Statistics,Shanghai University of Engineering Science,Shanghai 201620,China)
出处
《现代计算机》
2024年第14期75-79,共5页
Modern Computer
基金
上海工程技术大学大学生创新训练项目(CX2321003)。