期刊文献+

沙地越野场景下新能源汽车差速系统可靠性方法研究及应用

Research and Application of Reliability Method of Differential System of New Energy Vehicle in Off-road Scene on Sandy Surface
下载PDF
导出
摘要 基于新能源汽车差速系统考核现状,结合差速系统搭载在越野/轿跑车型上开展越野场景/赛道工况场景路试过程中出现的差速系统失效问题,分析研究了新能源汽车差速系统搭载在越野车型上的应用场景、工作原理、损伤机理和失效形式,采用了Archard损伤模型进行损伤校核。基于聚类分析对路试车辆采集的海量实车数据进行筛选提取,并在此基础上转化为动力总成台架验证测试工况,复现了路试车辆差速系统故障,形成了新能源汽车沙地越野场景下的差速系统可靠性考核能力,为差速系统选型和优化、新车型开发提供了支持。同时,本文对如何提高差速系统的性能和可靠性,也具有一定的参考价值。 Based on the current assessment status of the differential system of new energy vehicles,combined with the invalidation problem of the differential system installed on the cross-country type/sport sedan type,in the process of cross-country scene/racing track scene driving test,the application scenes,working principles,damage mechanisms and invalidation forms of the differential system installed on the cross-country type are analyzed in this paper.The Archard damage model is used for damage verification.Based on clustering analysis,the massive real automobile testing data collected from road test are screened and extracted,and then transformed into powertrain bench verification test conditions.The fault of the differential system of the road test automobile is reproduced,forming the reliability assessment ability of the differential system in the sand off-road scenario of new energy vehicles,which provides support for the selection and optimization of differential systems and the development of new automobile models.Meanwhile,this article also has certain reference value on how to improve the performance and reliability of differential systems.
作者 姜旭东 李政宏 张明朗 崔华芳 姚大朋 张一鸣 Jiang Xudong;Li Zhenghong;Zhang Minglang;Cui Huafang;Yao Dapeng;Zhang Yiming(BYD Auto Iudustry Company Limited,Shenzhen 518118;School of Trgffic&Transportation Engineering,Central South University,Changsha 410075)
出处 《汽车工程》 EI CSCD 北大核心 2024年第9期1678-1686,共9页 Automotive Engineering
关键词 越野车 轿跑车 差速系统 损伤模型 聚类分析 试验验证 cross-country vehicle sport sedan automobile differential system damage model cluster analysis test verification
  • 相关文献

参考文献3

二级参考文献42

  • 1马静波,杨洪耕.自适应卡尔曼滤波在电力系统短期负荷预测中的应用[J].电网技术,2005,29(1):75-79. 被引量:60
  • 2Lee Woo-Joo,Hong Jinkyu.A hybrid dynamic and fuzzy time series model for mid-term power load forecasting[J].Electrical Power and Energy Systems,2015,64:1057-1062.
  • 3Riswan Efendi,Zuhaimy Ismail,Mustafa Mat Deris.A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand[J].Applied Soft Computing,2015,28:422-430.
  • 4Peder Bacher,Henrik Madsen,Henrik Aalborg Nielsen,et al.Short-term heat load forecasting for single family houses[J].Energy and Buildings,2013,65:101-112.
  • 5Chou Jui-Sheng,Bui Dac-Khuong.Modeling heating and cooling loads by artificial intelligence for energy-efficient building design[J].Energy and Buildings,2014,82:437-446.
  • 6Powell Kody M,Sriprasad Akshay,Cole Wesley J,et al.Heating,cooling,and electrical load forecasting for a large-scale district energy system[J].Energy,2014,74:877-885.
  • 7Vaghefi A,Jafari M A.Modeling and forecasting of cooling and electricity load demand[J].Applied Energy,2014,136:186-196.
  • 8潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86. 被引量:221
  • 9潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,28(26):87-91. 被引量:110
  • 10范高锋,王伟胜,刘纯,戴慧珠.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123. 被引量:358

共引文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部