期刊文献+

改进型MobileNetV3轻量级人脸活体检测算法

LIGHTEWIGHT FACE ANTI-SPOOFING ALGORITHM BASED ON IMPROVED MOBILENETV3
下载PDF
导出
摘要 为了解决人脸识别系统中的欺诈攻击问题,以及目前基于深度学习的活体检测方法大多以大型卷积网络作为主干网络,导致模型结构复杂、计算量大等问题,提出一种改进型MobileNetV3的轻量级人脸活体检测算法。对MobileNetV3中利用全局平均池化计算通道注意力权重和使用双非线性全连接层存在的不足进行讨论,提出新的注意力机制EFCANet,并利用EFCANet网络对MobileNetV3轻量级卷积神经网络进行改进。实验结果表明,改进后轻量型活体检测算法,在检测精度、网络模型大小、损失值和等错误率等方面有着不错的表现。 In order to solve the problem of fraud attacks in face recognition systems and the problem that most deep learning based in-vivo detection methods use large convolutional networks as the backbone network,which leads to complex model structure and large computation amount,an improved lightweight face detection algorithm based on MobileNetV3 is proposed.This paper discussed the shortcomings of using global average pooling to calculate channel attention weight in MobileNetV3 and using double nonlinear fully connected layer.A new attention mechanism EFCANet was proposed,and the EFCANet network was used to improve MobileNetV3 lightweight convolutional neural network.The experimental results show that the improved light-weight face anti-spoofing algorithm has a good performance in detection accuracy,network model size,loss value,and equal error rate.
作者 李俣彤 宋伟 南新元 Li Yutong;Song Wei;Nan Xinyuan(College of Electrical Engineering,Xinjiang University,Urumqi 830047,Xinjiang,China;Xinjiang Special Equipment Inspection and Research Institute,Urumqi 830002,Xinjiang,China)
出处 《计算机应用与软件》 北大核心 2024年第9期195-200,共6页 Computer Applications and Software
基金 新疆维吾尔自治区自然科学基金项目(2019D01C079)。
关键词 活体检测 深度学习 注意力机制 轻量级网络 Anti-spoofing Deep learning Attention mechanism Lightweight network
  • 相关文献

参考文献6

二级参考文献42

共引文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部