期刊文献+

一种多尺度图像融合的冷冻电镜颗粒挑选方法

A METHOD FOR SINGLE PARTICLE SELECTION IN CRYO-EM BASED ON MULTI-SCALE IMAGE FUSION
下载PDF
导出
摘要 当前主流的冷冻电镜颗粒挑选方法往往需要大量人工生成的训练集或者优质颗粒模板,或者颗粒挑选过程极为复杂。为了提高冷冻电镜颗粒挑选的效率,简化颗粒挑选流程,提出一种自动挑选颗粒方法,在图像预处理阶段使用基于Lanczos采样图像融合方法提高图像质量,随后使用基于最大类间方差的图像阈值分割方法分离颗粒与背景,实现颗粒挑选。在EMPAIR公共数据集的实验结果表明,该方法与其他方法相比,具有更高的召回率与精确率。 The current mainstream particle selection methods for Cryo-EM often require massive artificially generated training sets or high-quality particle templates,or the particle selection process is extremely complicated.In order to improve the efficiency of cryo-electron microscopy particle selection and simplify the particle selection process,this paper proposes an automatic particle selection method.In the image preprocessing stage,the Lanczos sampling image fusion method was used to improve the image quality,and the image threshold segmentation method based on the maximum inter-class variance was used to separate the particles and the background to achieve particle selection.The experimental results on the EMPAIR public data set show that the proposed method has a higher recall rate and accuracy rate compared with other methods.
作者 何睦 钮焱 李军 He Mu;Niu Yan;Li Jun(School of Computer Science,Hubei University of Technology,Wuhan 430068,Hubei,China)
出处 《计算机应用与软件》 北大核心 2024年第9期250-256,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61902116)。
关键词 冷冻电镜 颗粒挑选 Lanczos采样 图像融合 阈值分割 Cryo-EM Particle selection Lanczos sampling Image fusion Threshold segmentation
  • 相关文献

参考文献3

二级参考文献19

  • 1Hashemi S, Kiani S, Noroozi N, et al. An image contrast enhancement method based on genetic algorithm [J]. Pattern Recognition Letters, 2010, 31(13): 1816-1824.
  • 2Marln D, Aquino A, Gegfindez-Arias M E, et al. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invuriants-based features [J]. IEEE Transactions on Medical Imaging, 2011, 30(1): 146-158.
  • 3Agrawal S, Panda R. An Efficient Algorithm for Gray Level Image Enhancement Using Cuckoo Search [C]. Pro- ceedings of International Conference on Swarm, Evolutionary, and Memetic Computing. Springer, 2012: 82-89.
  • 4Chaudhury K N, Sage D, Unser M. Fast bilateral filtering using trigonometric range kernels [J]. IEEE Transactions on Image Processing, 2011, 20(12): 3376-3382.
  • 5Yang Q. Recursive Bilateral Filtering [C]. Proceedings of Computer Virsion, 2012. European Conference on Springer, 2012: 399-413.
  • 6Patil V D, Ruikar S D. PCA based image enhancement in wavelet domain [J]. International Journal of Engineering Trends and Technology, 2012, 3(1): 59-63.
  • 7何昕,李晓华,周激流.一种自适应多阈值直方图均衡方法[J].计算机工程,2011,37(17):206-207. 被引量:13
  • 8李晓冰.一种红外测量图像自适应分段线性灰度变换方法[J].光电子技术,2011,31(4):236-239. 被引量:13
  • 9徐晶,明海.基于集成成像的深度提取线性插值增强方法[J].量子电子学报,2012,29(2):135-141. 被引量:7
  • 10汪晓波,刘斌.基于多分辨奇异值分解的多聚焦图像融合[J].量子电子学报,2014,31(3):257-263. 被引量:12

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部