期刊文献+

人工智能背景下我国运动训练科学化发展的机遇、挑战和策略

Opportunities,Challenges and Strategies for the Scientific Development of Sports Training in the Context of Artificial Intelligence
下载PDF
导出
摘要 在科学技术高度发展的时代,运动训练科学化变革是训练实践不断提高的关键。本文采用文献资料法、逻辑分析法等研究方法,对人工智能技术在运动训练科学化过程中的机遇、挑战和策略进行分析,以期为我国运动训练的改革与发展提供启示。研究认为:人工智能为运动训练科学化带来机遇:科学设备实现了训练数据的可视化,让训练过程得以实时监控;传播途径的不断丰富使训练手段更加多元;训练场景模拟的真实化使练习贴近实战;训练状态反馈的即时性让训练更具有针对性。但同时在实际应用中也存在相关人员信息化素养不足、技术设备成本过高、运动员隐私信息泄露等风险挑战。据此,提出人工智能背景下我国运动训练科学化发展的策略:持续提高从业人员素质,系统构建信息化培训机制;进一步提高人工智能水平,突破应用障碍;建立依法规约的人工智能应用体系,保护使用者隐私及安全。 In an era of highly advanced science and technology,the scientific revolution in sports training is crucial for continuous improvement in training practices.This study employs literature research method and logical analysis to analyze the opportunities,challenges,and strategies of integrating artificial intelligence(AI)technology into the scientific process of sports training,aiming to provide insights for the reform and development of sports training in China.The study suggests that AI brings opportunities for the scientific development of sports training:scientific equipment enables the visualization of training data,allowing real-time monitoring of the training process;the continuous enrichment of communication channels diversifies training methods;realistic simulation of training scenarios brings practice closer to real matches;and real-time feedback on training status makes the training more targeted.However,challenges exist in the practical application,including insufficient information literacy of relevant personnel,high costs of technical equipment,and the risk of athletes'privacy information leakage.As such,strategies for the scientific development of sports training in the context of AI in China are proposed:continuously improving the professional quality of practitioners and systematically establishing an information-based training mechanism;further enhancing the level of AI and overcoming application barriers;establishing a legally regulated Al application system to protect users'privacy and security.
作者 方宇豪 杨清琼 Fang Yuhao;Yang Qingqiong(School of Physical Education,Yunnan Normal University,Kunming 650500,China)
出处 《体育科技文献通报》 2024年第8期86-88,共3页 Bulletin of Sport Science & Technology
基金 2022年度云南省哲学社会科学规划项目“云南省大型户外运动赛事安全风险评估与控制路径研究”(项目批准号:YB2022098)。
关键词 运动训练 人工智能 训练科学 机遇 挑战 策略 sports training artificial intelligence scientific training opportunities challenges strategies
  • 相关文献

参考文献6

二级参考文献59

共引文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部