期刊文献+

基于Baseline-RFMDR的主动式井下组合定位方法

Autonomous Underground Combination Positioning Method Based on Baseline-RFMDR
下载PDF
导出
摘要 井下人员定位是井下安全生产的保障,也是智能矿山发展的关键技术。目前基于微机电系统(MEMS)组合定位技术是智能矿山自主定位的研究热点,但由于MEMS测量信号易受干扰,存在自主定位精度较低的问题。针对井下低成本MEMS自主定位精度低、稳定性差的问题,提出了一种基于基线—射频地磁航位推算(Baseline-RFMDR)组合的井下定位方法。该方法以地磁匹配定位与行人航迹推算(PDR)定位为基础方程,利用巷道“标签对”短基线作为约束条件的卡尔曼滤波解算的数学模型,能够有效控制地磁匹配和PDR定位误差。选取了国家矿山应急救援模拟巷道为试验场地,携带自主研发的低成本MEMS集成自主定位装置进行人员动态定位试验,测试Baseline-RFMDR定位方法的精度和可靠性。试验结果表明:研发的低成本Baseline-RFMDR自主定位装置可以有效、连续地采集地磁数据、行人姿态、行走数据,技术架构稳定;在行人连续行走条件下,PDR定位前期精度较高,但是随着行人行走时长增长,误差累积明显增大;地磁匹配不会随着行走时长增长发生累积,但是精度较低,大部分匹配误差在2 m左右。Baseline-RFMDR组合定位总体精度明显优于PDR定位和地磁匹配定位精度,在人员巷道前进方向坐标误差控制在1 m以内,为实现井下低成本、高精度自主定位提供了新思路。 Underground personnel positioning is a guarantee for safe production and a key technology for intelligent mine.MEMS(Micro-Electro-Mechanical System)-based combined positioning represents a research focus for autonomous positioning in intelligent mines.At present,microelectromechanical system(MEMS)-based combined positioning technology is a research area of significant interest with regard to autonomous positioning in intelligent mines.However,due to the susceptibility of MEMS measurement signals to interference,there is a notable challenge associated with achieving optimal autonomous positioning accuracy.To address the issues of low accuracy and poor stability of low-cost autonomous underground positioning,a combined Baseline-RFMDR-based underground positioning method is proposed.The method combines geomagnetically matched positioning with Pedestrian Dead Reckoning(PDR)positioning and constructs a mathematical model for Baseline-RFMDR Kalman filtering solution using a short baseline of"tag pairs"deployed in the roadway as constraints.The simulated tunnel of the national mine emergency rescue was selected as the test site for the deployment of the self-developed low-cost MEMS integrated autonomous positioning device,which was used to conduct personnel dynamic positioning tests and to assess the Baseline-RFMDR positioning accuracy and reliability.The test results indicated that the low-cost Baseline-RFMDR autonomous positioning device is capable of effectively and continuously collecting geomagnetic data,pedestrian attitude data,and walking data.Furthermore,the technical architecture is stable.In the context of continuous pedestrian movement,the accuracy of PDR positioning is high in the prior period.However,the error accumulation increases with the growth of pedestrian walking length.The geomagnetic matching will not be accumulated with the growth of walking length.Nevertheless,the accuracy is low,and most of the matching error is approximately 2 m.The Baseline-RFMDR method demonstrates superior positioning accuracy compared to PDR and geomagnetic matching positioning.The coordinate error is maintained within 1 m in the forward direction of the personnel tunnel.This approach offers a novel solution for low cost and high precison underground autonomous positioning.
作者 李鸣铎 汪金花 孟庆港 候金亮 郭立稳 LI Mingduo;WANG Jinhua;MENG Qinggang;HOU Jinliang;GUO Liwen(School of Mineral Engineering,North China University of Science and Technology,Tangshan 063210,China;School of Elctrical Engineering,SNorth China University of cience and Technology,Tangshan 063210,China;School of Emergency Management and Safety Engineering,North China University of Science and Technology,Tangshan 063210,China)
出处 《金属矿山》 CAS 北大核心 2024年第9期207-213,共7页 Metal Mine
基金 国家自然科学基金项目(编号:42274056) 河北省教育厅科学研究项目(编号:QN2022117)。
关键词 井下自主定位 组合定位方法 定位装置设计 定位坐标解算 underground autonomous positioning combined positioning method positioning device design positioning coordinate solving
  • 相关文献

参考文献5

二级参考文献37

  • 1韩东升,杨维,刘洋,张玉.煤矿井下基于RSSI的加权质心定位算法[J].煤炭学报,2013,38(3):522-528. 被引量:64
  • 2王东霞,夏庆观.基于DSP技术的微震实时监测系统[J].微型机与应用,2005,24(3):15-18. 被引量:7
  • 3刘颖,吴美平,胡小平,谢红卫.基于等值线约束的地磁匹配方法[J].空间科学学报,2007,27(6):505-511. 被引量:31
  • 4吴和平,吴玲,张毅,杨立兵.井下无人采矿技术装备导航与控制关键技术[J].有色金属(矿山部分),2007,59(6):12-16. 被引量:25
  • 5Larsson J, Broxvall M, Saffiotti A. A navigation system for automated loaders in underground mines [J]. Springer Tracts in Advanced Robotics, 2006(25): 129-140.
  • 6Roberts J M, Duff E S. Corke P I. Reactive navigation and opportunistic localization for autonomous underground mining vehicles [J]. Information Sciences, 2002, 145: 127-146.
  • 7Bissiri Y, Baiden G, Filion S, et aL Automated surveying dcvice for underground navigation. 2008 Institute of Materials, Minerals and Mining Published by Maney on behalf of the Institute [J]. Mining Technology, 2008, 117(2) : 71-82.
  • 8Costello S B, Chapman D N, Rogers C D F, et al. Underground asset location and condition assessment technologies [J]. Tunnelling and Underground Space Technology, 2007(22): 524- 542.
  • 9Schneider O. Requirements lbr positioning and navigation inunderground constructions. 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 15-17 September 2010, Z ii rich, Switzerland.
  • 10CHI Hongpeng, ZHAN Kai. Automatic guidance of underground mining vehicles using laser sensors. Tunnelling and Underground Space Technology, 2012, 27: 142-148.

共引文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部