期刊文献+

灭菌温度对超细晶Zn-0.3Mn合金力学和腐蚀性能的影响

Effect of sterilization temperatures on the mechanical and corrosion properties of ultrafine-grained Zn-0.3Mn alloy
下载PDF
导出
摘要 通过大塑性变形(铸造-热挤压-多道次旋锻)制备了面向医用骨科植入应用领域的可降解超细晶(UFG)Zn-0.3Mn合金(Original),进而研究了其在低温灭菌(t 55)、蒸汽灭菌(t 120)和干热灭菌(t 180)温度状态下微观组织、力学性能、腐蚀性能的变化。研究发现:随着灭菌温度的提高,合金再结晶程度逐步加剧,主相晶粒尺寸和MnZn 13相颗粒尺寸均有所增加;力学性能方面,合金的纳米硬度和弹性模量会随着灭菌温度升高而逐渐提高;腐蚀性能方面,归因于晶界密度和MnZn 13相比例降低,减少了腐蚀起始点,合金腐蚀速率逐步下降。因而,灭菌温度会对可降解超细晶Zn-0.3Mn合金微观组织、力学性能和腐蚀性能产生足够大的影响,对于锌基植入器械的灭菌方法要尽量避免升温过程。 In this study,a biodegradable ultrafine-grained(UFG)Zn-0.3Mn alloy(Original)for medical orthopedic implant applications was prepared by severe plastic deformation(casting-hot extrusion-multipass rotary forging).The changes in the microstructure,mechanical properties,and corrosion properties of this alloy under the conditions of low-temperature sterilization(t 55),steam sterilization(t 120),and dry heat sterilization(t 180)were also investigated.Results show that the degree of alloy recrystallization gradually intensifies at the microstructure level as the sterilization temperature increases.At the same time,the grain size of the main phase and the particle size of the MnZn 13 phase enlarge.In terms of mechanical properties,the nano hardness and elastic modulus of the alloy will gradually increase with the increase of sterilization temperature.The corrosion performance is attributed to the decreases in grain boundary density and MnZn 13 phase ratio.These decreases reduce the corrosion initiation point and gradually lower the corrosion rate of the alloy.Accordingly,the sterilization temperature will sufficiently affect the microstructure,mechanical properties,and corrosion behavior of the biodegradable UFG Zn-0.3Mn alloy.Therefore,the heating process should be avoided in the sterilization method of Zn-based implant devices.
作者 郭浦山 王宇伟 刘雅玄 丁锋 张竞丹 杨丽景 张屹 GUO Pushan;WANG Yuwei;LIU Yaxuan;DING Feng;ZHANG Jingdan;YANG Lijing;ZHANG Yi(School of Mechanical Engineering and Rail Transit,Changzhou University,Changzhou 213164,China;Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China)
出处 《常州大学学报(自然科学版)》 CAS 2024年第5期30-39,51,共11页 Journal of Changzhou University:Natural Science Edition
基金 江苏省高等学校自然科学研究面上资助项目(22KJB430015) 江苏省自然科学基金资助项目(BK20231339) 常州市“龙城英才计划”第四批市领军型创新人才引进培育项目(CQ20230095)。
关键词 超细晶Zn-0.3Mn合金 灭菌温度 力学性能 腐蚀性能 ultrafine-grained Zn-0.3Mn alloy sterilization temperature mechanical properties corrosion properties
  • 相关文献

参考文献3

二级参考文献65

  • 1Kannan M B, Raman R K. In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloy in Modified-Sim- ulated Body Fluid [J]. Biomaterials, 2008, 29:2306-2314.
  • 2Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and Its Alloys as Orthopedic Biomaterials: A Review [ J l- Biomaterials,2006, 27:1 728 - 1 734.
  • 3De Valk H W. Magnesium in Diabetes Meltitus [ J]. Neth J Med, 1999, 54 (4): 139-146.
  • 4Saris N E, Mervaala E, Karppanen H, et al. Magnesium: An Up- date on Physiological, Clinical and Analytical Aspects [ J ]. Clin Chim Acta, 2000, 294 (1 -2) : 1 -26.
  • 5Okuna T. Magnesium and Bone Strength [ J]. Nutrition, 2001, 17 (7 -8) : 679 -680.
  • 6Vormann J. Magnesium: Nutrition and Metabolism [ J]. Mol As- pects Med, 2003, 24 : 27 - 37.
  • 7Akiko Y. Biomedical Application of Magnesium Alloys [ J ]. Journal of Japan Institute of Eight Metals, 2008, 58 (11) : 570 -576.
  • 8Nagels J, Stokdijk M, Rozing 19 M. Stress Shielding and Bone Re- sorption in Shoulder Arthroplasty [ J ]. Shoulder and Elbow Surgery, 2003, 12 (1) : 35 -39.
  • 9Lambotte A. L'Utilisation du Magnesium Comme Material Perdu Dans l'Osteosynthese[ J]. Bull Mere Soc Nat Chit, 1932, 28: 1 325-1 334.
  • 10Troitskii W, Tsitrin D N. The Resorbing Metallic Alloy Osteosi- nthezit as Material for Fastening Broken Bone [ J ]. Khirurgiia, 1944, 8:41 -44.

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部