期刊文献+

基于改进YOLOv4的实时目标检测方法研究

Research on Real-time Object Detection Method Based on Improved YOLOv4
下载PDF
导出
摘要 为提升实时目标检测的准确性和稳健性,该文采用增强特征融合技术、网络架构技术、损失函数技术等对YOLOv4算法进行优化。结果表明,改良后的YOLOv4算法在多变环境下对小型目标检测表现出色,展现了其实用性和稳定性,为广泛应用奠定了坚实基础。 To enhance the accuracy and robustness of real-time object detection,this paper optimizes the YOLOv4 algorithm by employing enhanced feature fusion technology,network architecture technology,loss function technology,and other strategies.The results demonstrate that the improved YOLOv4 algorithm exhibits excellent performance in detecting small objects in diverse environments,showcasing its practicality and stability,and laying a solid foundation for its widespread application.
作者 鲁健恒 LU Jianheng(College of Artificial Intelligence,Guangzhou Huashang College,Guangzhou 511300,China)
出处 《数字通信世界》 2024年第9期16-18,21,共4页 Digital Communication World
关键词 实时目标检测 YOLOv4 特征融合 GIoU损失函数 real-time object detection YOLOv4 feature fusion GIoU loss function
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部