期刊文献+

基于生成式人工智能的人机协同学习更能提升学习成效?——基于20项实验和准实验的元分析

Does Human-computer Collaborative Learning Based on Generative Artificial Intelligence Enhance Learning Outcomes?-A Meta-analysis of 20 Experimental and Quasi-experimental Studies
下载PDF
导出
摘要 生成式人工智能的崛起为人机协同学习注入了动力。然而,学界对基于生成式人工智能的人机协同学习成效仍有争议。本研究采用元分析法对国内外20项研究进行整合分析,并从学科领域、知识类型、干预时长等维度探讨调节变量对基于生成式人工智能的人机协同学习成效的影响。结果显示,相比于传统学习方式,基于生成式人工智能的人机协同学习能有效提升学习成效。调节分析表明,基于生成式人工智能的人机协同学习在社会科学领域与程序性知识学习中的表现更好;干预周期越长影响越弱;群体学习、角色设定与翻转课堂对人机协同学习成效的影响最突出;学科领域、知识类型、学习方式等的组间差异不显著。研究者需加强实践适切性设计,开展围炉群证式学习,注重角色精细化指引和探索模式深度融合,以助推基于生成式人工智能的人机协同学习理论与实践的发展。 The rise of Generative Artificial Intelligence(AI)has energized human-computer collaborative learning.However,there is still debate within the academic community regarding the effectiveness of collaborative learning facilitated by generative AI.This study utilized a meta-analytical approach to synthesize 20 domestic and international studies and examined the impact of moderating variables such as academic discipline,type of knowledge,and duration of intervention on the effectiveness of human-computer collaborative learning based on generative AI.The results indicate that,compared to traditional learning methods,human-computer collaborative learning enabled by generative AI enhances learning outcomes more effectively.The moderation analysis shows that the collaborative learning performs better in the field of social sciences and in the learning of procedural knowledge.Longer intervention periods correlate with weaker effects.Group learning,role-setting,and flipped classrooms have the most pronounced impact on the effectiveness of collaborative learning.Differences in academic disciplines,types of knowledge,and modes of learning are not significant among groups.Based on the results,the study suggests that researchers need to strengthen the design of practical applicability,conduct hearth-group evidence-based learning,enhance role-specific guidance,and explore deeply integrated learning models,to further advance the theoretical and practical development of human-computer collaborative learning integrated with generative AI.
作者 和文斌 赵帅 阿不来提·瓦依提 塔卫刚 徐恩伟 HE Wenbin;ZHAO Shuai;Abulaiti Wayiti;TA Weigang;XU Enwei(School of Educational Science,Xinjiang Normal University,Urmuqi 830017,China;Primary Education College,Ludong University)
出处 《开放教育研究》 北大核心 2024年第5期101-111,共11页 Open Education Research
基金 教育部产学合作协同育人项目“师范类虚拟仿真综合实训课程开发研究”(231105407275433) 新疆维吾尔自治区研究生科研创新项目“面向深度学习的人机协商模式构建研究”(XJ2024G198) 新疆维吾尔自治区“天池英才”引进计划2023年度自治区“十四五”重点学科教育学招标课题“师范认证视角下教育技术专业本科生协作深度学习模式研究”(23XJKD0205) 新疆师范大学自治区“十四五”重点学科教育学招标课题“新疆高校教师数字素养现状调查与对策研究”(23XJKD0210) 新疆师范大学智库招标项目“信息技术支持下农牧区教师能力素养提升机制研究”(ZK202233B)。
关键词 生成式人工智能 人机协同学习 学习成效 元分析 Generative Artificial Intelligence human-computer collaborative learning learning effectiveness meta-analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部