期刊文献+

基于CNN-LSTM模型的绝缘架空导线局部放电识别研究

Research on Partial Discharge Recognition of Insulated Overhead Conductors Based on CNN-LSTM Model
下载PDF
导出
摘要 绝缘架空导线相较于传统的裸露导线具有更好的绝缘性能,但当其掉到地上或被树枝等异物击中时,不会引起过电流,这使得标准保护设备往往难以检测到这些故障,而此类故障通常会引起局部放电(PD)现象。提出了一种基于卷积神经网络(CNN)和长期短期记忆神经网络(LSTM)的PD模式识别算法。该算法通过映射加权和学习参数矩阵赋予LSTM隐含状态不同的权重,从而减少历史信息的丢失并加强重要信息的影响作用,最终实现对PD活动的检测与识别。在VSB公开的ENET数据集上,提出的方法对正常类型和故障类型的识别精度分别达到了90.44%和90.33%,并与多种算法进行了比较,结果表明所提出的方法具有更高的识别精度。 Insulated overhead conductors,compared to traditional bare conductors,exhibit better insulation per"formance.However,faults such as the insulation conductor falling to the ground or being struck by foreign objects like tree branches do not cause overcurrent,making them difficult for standard protection devices to detect.Such faults often lead to partial discharge(PD)phenomena.This paper proposes a PD pattern recognition algorithm based on Convolutional Neural Networks(CNN)and Long Short-Term Memory networks(LSTM).The algorithm assigns different weights to the LSTM hidden states through mapping weighting and learning parameter matrices,reducing the loss of historical information and enhancing the influence of important information,thereby detecting and recognizing PD activities.Using the VSB publicly available ENET dataset,the proposed method achieves recognition accuracies of 90.44%for normal types and 90.33%for fault types,respectively,and is compared with various algorithms,demonstrating higher recognition accuracy.
作者 周平 徐梓源 周楠 俞玲 沈良 李启本 ZHOU Ping;XU Ziyuan;ZHOU Nan;YU Ling;SHEN Liang;LI Qiben(State Grid Songjiang Power Supply Company,SMEPC,Shanghai 201600,China)
出处 《电力与能源》 2024年第4期460-464,共5页 Power & Energy
关键词 绝缘架空导线 卷积神经网络 长短期记忆神经网络 PD活动识别 insulated overhead conductors convolutional neural network long/short-term memory network PDactivityrecognition
  • 相关文献

参考文献4

二级参考文献50

  • 1杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64. 被引量:85
  • 2张振高,杨正瓴.短期负荷预测中的负荷求导法及天气因素的使用[J].电力系统及其自动化学报,2006,18(5):79-83. 被引量:17
  • 3Nian Bei, Fu Zhizhong. Automatic detection of defects in solar modules: image processing in detecting[C]//International Conference on Wireless Communications Networking and Mobile Computing. Chengdu, China: IEEE, 2010: 1-4.
  • 4Zhu Yongqiang, Wang Wenshan. Fault diagnosis method and simulation analysis for photovoltaic array[C]//International Conference on Electrical and Control Engineering. Yichang, China: IEEE, 2011: 1569-1573.
  • 5Takumi J, Kenji K. Experimental studies of failure detection methods in PV module strings[C]//IEEE 4th World Conference on Photovoltaie Energy Conversion. Waikoloa, HI': IEEE, 2006: 2227-2230.
  • 6Takumi J M. Fault detection by signal response in PV module strings[C]//IEEE Photovoltaic Specialists on Industrial Electronics. San Diego, CA, USA: IEEE, 2008: 1-5.
  • 7Schirone L, Califano F P. Fault finding in a 1 MW photovoltaic plant by reflectometry[J]. IEEE Photovoltaic Energy Conversion, 199J, 1(1): 846-849.
  • 8Takumi T, Junji Y, Masayoshi I. Disconnection detection using earth capacitance measurement in photovoltaic module string[J]. Progress inPhotovoltaics, 2008, 16(8): 669-677.
  • 9Syafaruddin E, Karatepe T H. Controlling of artificial neural network for fault diagnosis of photovoltaic array[C]//16th International Conference on Intelligent System Application to Power Systems. Hersonissos: IEEE, 2011- 1-6.
  • 10Pietro D, Miehela F, Beatrice L, et al. An intelligent systefia for detecting faults in photovoltaic fields[C]//IEEE l lth InternationalConference on Intelligent Systems Design and Applications. Cordoba: IEEE, 2011. 1341-1346.

共引文献413

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部