期刊文献+

基于反事实多智能体强化学习和有功无功协同控制的配电网电压优化

Active and reactive power coordinated optimal voltage control of a distribution network based on counterfactual multi-agent reinforcement learning
下载PDF
导出
摘要 大量分布式电源的接入使配电网的结构与控制方式发生改变。针对分布式电源间歇性和波动性引起的电压越限问题,通过调节系统中无功潮流与有功潮流的分布来维持配电网的电压稳定。提出了一种基于反事实多智能体策略梯度(counterfactual multi-agent policy gradients, COMA)算法的配电网电压协同优化方法,通过反事实基线解决了多智能体强化学习中的“信度分配”问题,实现有功出力设备和无功补偿设备的联合优化调度。智能体通过局部观测值选定动作,减轻系统的通信压力,且不依赖精确的潮流模型,以实现配电网的实时优化控制。通过改进的IEEE33节点系统和141节点系统验证了所提算法的可行性与有效性。并与经典算法的控制效果进行比较,进一步证明所提算法在配电网电压优化控制方面的性能优势。 The integration of a significant number of distributed generators has altered the structure and control methods in distribution networks.To address the voltage stability issues caused by the intermittency and fluctuation of distributed generators,this paper proposes the stabilization of the distribution network voltage by adjusting the distribution of reactive and active power flows within the system.A distribution network voltage coordinated optimization method is proposed based on the counterfactual multi-agent policy gradients(COMA)algorithm.The proposed method can use a counterfactual baseline to resolve the“credit assignment”challenge in multi-agent reinforcement learning,enabling the joint optimization scheduling of active power generation and reactive power compensation devices.Agents select actions based on local observations,thereby reducing the system’s communication load and eliminating the dependency on precise flow models,to achieve real-time optimization control of distribution networks.The feasibility and effectiveness of the proposed algorithm are demonstrated by using the improved IEEE33-node system and 141-node system.Compared with the classic control algorithms,the proposed method has further performance advantages in the voltage optimization and control problems for distribution networks.
作者 张梓枭 崔明建 张程彬 张剑 蔡木良 周求宽 ZHANG Zixiao;CUI Mingjian;ZHANG Chengbin;ZHANG Jian;CAI Muliang;ZHOU Qiukuan(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China;School of Electrical and Automation Engineering,Hefei University of Technology,Hefei 230009,China;State Grid Jiangxi Electric Power Research Institute,Nanchang 330096,China)
出处 《电力系统保护与控制》 EI CSCD 北大核心 2024年第18期76-86,共11页 Power System Protection and Control
基金 国家自然科学基金项目资助(52207130) 江西省重点研发计划项目资助(20223BBE51013)。
关键词 配电网 有功无功协同优化 多智能体深度强化学习 分布式电源 distribution network active and reactive power coordinated optimization multi-agent deep reinforcement learning distributed generator
  • 相关文献

参考文献16

二级参考文献248

共引文献313

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部