摘要
为探究水平振动式滚磨光整加工对零件表面残余应力的影响,提出一种适用于动态零件的离散元有限元(DEM-FEM)耦合仿真方法。分析了振动周期内颗粒运动状态以及颗粒间平均接触力的变化,构建了颗粒与零件间的随机接触模型,开展了不同振动参数下的残余应力仿真,并进行了实验验证。研究结果表明:随着振动强度的增大,容器内颗粒运动更加剧烈,颗粒与零件间有效法向接触力发生概率及均值增大,导致零件表面残余压应力呈增大趋势。残余应力仿真值与实验值对振动参数的响应趋势一致,误差在3.6%~11.3%之间。
To investigate the influences of horizontal vibratory finishing on the residual stress of part surfaces,a coupled DEM-FEM simulation method applicable to dynamic parts was proposed.The particle motion states and the changes of average contact force among particles were analyzed during the vibration cycle,and a random contact model between particles and parts was constructed to carry out the simulation of residual stresses of vibratory finishing with different vibration parameters,and experimental validation was carried out.The results show that with the increase of vibration intensity,the particle motions in the container are more intense,and the probability of occurrence and the mean value of the effective normal contact force between the particles and the parts increases,resulting in an increasing trend of the residual compressive stress on the surfaces of the parts.The simulated and the experimental values of residual stress show the same response trends to the vibration parameters,with the errors ranging from 3.6%to 11.3%.
作者
田涛
李文辉
温学杰
李秀红
杨胜强
TIAN Tao;LI Wenhui;WEN Xuejie;LI Xiuhong;YANG Shengqiang(College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan,030024;College of Aeronautics and Astronautics,Taiyuan University of Technology,Jinzhong,Shanxi,030600;Shanxi Key Laboratory of Precision Machining,Taiyuan,030024;College of Mechanical Engineering,Tianjin University of Science and Technology,Tianjin,300457)
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2024年第9期1667-1676,共10页
China Mechanical Engineering
基金
国家自然科学基金(51975399,52075362,51875389)
中央引导地方科技发展资金(YDZJSX2022A020,YDZJSX2022B004)。
关键词
离散元有限元
水平振动式滚磨光整加工
残余应力
颗粒运动
随机接触模型
discrete element method-finite element method(DEM-FEM)
horizontal vibratory finishing
residual stress
particles motion
random contact model