摘要
本文利用Nevanlinna值分布理论,研究了零级超越亚纯函数条件下的一类微分-差分多项式的值分布问题,以及两个零级超越亚纯的微分-差分多项式在极点相同(不计重数)的条件下CM分担一个有理函数的唯一性问题,得到了两个定理及三个推论,所得结果改进或推广了陈文杰等人以及赵秋霞等人的相关结果.
By using Nevanlinna value distribution theory,the value distribution of a class of differentialdifference polynomials under the condition of zero order transcendental meromorphic functions and the uniqueness of CM sharing a rational function under the condition that two zero order transcendental meromorphic differential-difference polynomials have the same poles(ignoring multiplicity)are studied.Two theorems and three corollaries are obtained.The results improve or generalize the relevant results of Chen Wenjie et al and Zhao Qiuxia et al.
作者
张晓斌
王钥
ZHANG Xiaobin;WANG Yue(College of Science,Civil Aviation University of China,Tianjin 300300,China;College of Statistics and Mathematics,Hebei University of Economics and Business,Shijiazhuang 050061,China)
出处
《纯粹数学与应用数学》
2024年第3期558-570,共13页
Pure and Applied Mathematics
基金
国家自然科学基金(11801132)
中央高校基本科研业务费(3122016L001).
关键词
亚纯函数
有理函数
值分布
唯一性
微分-差分多项式
meromorphic function
rational function
value distribution
uniqueness
differential-difference polynomial