期刊文献+

“海上田园”背景下的渔排多微电网经济运行优化策略

Optimization strategy of economic operation of fishery microgrids under the background of“marine pastoral fields”
下载PDF
导出
摘要 针对“海上田园”渔排多微电网系统,提出了微电网群系统模型,并针对其在无大电网支持的特殊环境下维持电力所面临的供应稳定性和经济效益的挑战,提出了两个经济性目标函数,综合考虑了微电网间的功率调度及其经济效益。应用非支配排序遗传算法Ⅱ(NSGA-Ⅱ)和基于分解的约束多目标进化算法(CMOEA/D)对目标函数求解。结果表明,CMOEA/D算法在追求经济最优解方面表现出较高的效率和准确度,在最优解的质量和迭代时间上也都比NSGA-Ⅱ算法表现更优,验证了所提模型和算法的有效性。 For the aquaculture raft microgrid system in the“marine pastoral fields”,a model of microgrid cluster systems is proposed.Addressing the challenges of maintaining stable power supply and economic benefits in the special environment without the support of a large grid,two economic objective functions are introduced,which take into account the power dispatching between microgrids and their economic benefits.The non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)and the constraint multi-objective evolutionary algorithm based on decomposition(CMOEA/D)are applied to solve the objective functions.Results indicate that the CMOEA/D algorithm demonstrates higher efficiency and accuracy in pursuing economically optimal solutions,outperforming the NSGA-Ⅱ algorithm in both the quality of the optimal solutions and the iterative time,thereby verifying the effectiveness of the proposed model and algorithms.
作者 郭昊文 陈思妍 罗浩 黄靖 GUO Haowen;CHEN Siyan;LUO Hao;HUANG Jing(School of Electronic,Electrical Engineering and Physics,Fujian University of Technology,Fuzhou 350118,China)
出处 《福建理工大学学报》 CAS 2024年第4期379-386,400,共9页 JOURNAL OF FUJILAN UNIVERSITY OF TECHNOLOGY
基金 国家级大学生创新创业训练计划(202310388022) 福建理工大学科研发展基金专项(GY-Z23080)。
关键词 多微电网 多目标优化 NSGA-Ⅱ CMOEAD 优化策略 microgrids multi-objective optimization NSGA-Ⅱ CMOEAD optimization strategy
  • 相关文献

参考文献9

二级参考文献91

  • 1党莹颖,袁博,张顺.基于BIM的漂浮式水上光伏电站设计[J].人民长江,2022,53(S01):39-43. 被引量:5
  • 2鲁宗相,李昊,乔颖.从灵活性平衡视角的高比例可再生能源电力系统形态演化分析[J].全球能源互联网,2021,4(1):12-18. 被引量:53
  • 3李威武,王慧,邹志君,钱积新.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63. 被引量:92
  • 4陈磊,毛亚林,吕兴兵,董军.基于MATLAB的非导数优化仿真[J].制冷空调与电力机械,2005,26(1):36-38. 被引量:1
  • 5Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II [ J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182-197.
  • 6Omar Hafez, Kankar Bhattacharya. Optimal planning and de- sign of a renewable energy based supply system for microgrids [ J]. Renewable Energy,2012,45:7-15.
  • 7Faisal A. Mohamed, Heikki N. Koivo. Muhiobjective optimi- zation using Mesh Adaptive Direct Search for power dispatch problem of microgrid [ J ]. Electrical Power and Energy Sys- tems,2012,42:728-735.
  • 8王振华,朱桂萍.并网状态下微电网中微电源出力优化算法[J].电网技术,2012,45(1):55-58.
  • 9Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-fi:equancy AC microgrid [J]. IEEE Transactions on Industrial Electronics, 2007, 54(I): 97-109.
  • 10Hernandez-Ammburo C A, Green T C, Mugniot N. Fuel consumption minimization of a microgrid[J]. IEEE Transactions on Industry Applications, 2005, 41(3): 673-681.

共引文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部