期刊文献+

Kirchhoff方程规范解的存在性

The Existence of Normalized Solutions for Kirchhoff Equation
下载PDF
导出
摘要 由于Kirchhoff方程在众多物理问题中有着十分重要的应用,其规范解问题在近年来逐渐引起大批学者的研究兴趣。这些研究集中于探讨方程规范解的存在性问题,即在特定质量约束条件下,是否能找到满足方程的解。文章研究了一类带组合非线性项Kirchhoff方程规范解的存在性问题。通过利用变分法中的极小化方法,集中紧性原理和消失引理,证明了在扩散情形下对任意质量约束,方程存在一个规范解。对比已有的结果,文章的结论是对已有相关结果的推广。 Due to the significant applications of the Kirchhoff equation in numerous physical problems,the issue of normalized solutions has gradually attracted the research interest of a large number of scholars in recent years.These studies focus on exploring the existence of normalized solutions to equations,specifically,whether solutions that satisfy the equations can be found under certain mass constraint conditions.An investigation is conducted into the existence of normalized solutions for a class of Kirchhoff equations with combined nonlinear terms.By utilizing the minimization method in variational calculus,along with the concentration compactness principle and the vanishing lemma,it has been proven that under diffusion conditions with arbitrary mass constraints,the equation possesses a normalized solution.Comparing with existing results,the conclusions of the research serve as an extension of existing related results.
作者 徐麟 谢启林 Xu Lin;Xie Qi-lin(School of Mathematics and Statistics,Guangdong University of Technology,Guangzhou 510006,China)
出处 《广东工业大学学报》 CAS 2024年第5期125-128,共4页 Journal of Guangdong University of Technology
基金 广东省自然科学基金资助项目(2021A1515010383,2022A1515010644)。
关键词 规范解 基尔霍夫方程 组合非线性项 normalized solutions Kirchhoff equation mixed nonlinearty
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部