摘要
为有效解决流域梯级水库群联合优化调度这一典型的大规模、强耦合、多目标、多约束复杂非线性优化问题,提出了一种基于改进多目标蜂群算法(EMOBCO)的并行多目标调度建模及求解技术。以梯级水库群总发电量最大和调度期最小出力最大为目标,建立了梯级水库群多目标发电调度模型,利用EMOBCO算法以及启发式约束处理策略等措施进行模型寻优,并通过引入Fork/Join并行计算框架对模型求解流程进行解耦,有效提高模型求解效率。以老挝南欧江流域梯级水库群为调度对象进行了多目标优化调度方法适应性分析,仿真结果表明,提出的EMOBCO算法获得的非劣方案集分布性较好,算法执行效率高,为解决梯级水库群多目标联合优化调度问题提供了一种可借鉴的思路。
In order to effectively solve the typical large-scale,strongly coupled,multi-objective and multiconstraint complex nonlinear optimization problem of cascade reservoir,a parallel multi-objective optimal scheduling method based on enhanced multi-objective bee colony algorithm(EMOBCO)is proposed in this paper.With the objectives of maximum total power generation,and maximum minimum output during operation period,a multi-objective power optimization scheduling model of cascade reservoir was established,and EMOBCO algorithm and heuristic constraint processing strategy were used to optimize the model.By introducing Fork/Join parallel computing framework to decouple the model solving process,the model solving efficiency is improved effectively.This paper analyzes the adaptability of the multi-objective optimal scheduling method for cascade reservoir in Nam Ou River basin of Laos.Simulation results show that the proposed EMOBCO algorithm has a good distribution of non-inferior scheme sets and high execution efficiency,which provides a useful idea for solving the multi-objective joint optimal scheduling problem of cascade reservoir.
作者
卢鹏
周鹏程
韩兵
杨开斌
LU Peng;ZHOU Pengcheng;HAN Bing;YANG Kaibin(Power China Kunming Engineering Corporation Limited,Kunming 650051,China)
出处
《云南水力发电》
2024年第9期175-182,共8页
Yunnan Water Power
关键词
梯级水库群
多目标调度
蜂群算法
并行计算
cascade reservoir group
multi-objective scheduling
bee colony algorithm
parallel computing