摘要
针对当前乡村旅游直播内容推送缺乏个性化的问题,本文构建了大数据驱动的乡村旅游直播精准推荐系统。系统通过用户及内容多源数据采集与处理、用户画像构建、个性化推荐算法设计和结果展示模块,实现用户兴趣模型与旅游内容的精准匹配。实证结果显示,该推荐系统达到直播内容点击率提升40%、用户黏性增加30%、销售转化提高25%的显著效果。这充分验证了大数据分析与个性化推荐技术在解决当前乡村旅游直播内容推送效能问题中的重要应用价值。
In response to the current lack of personalization in rural tourism live streaming content recommendations,this paper studies and constructs a big data-driven precise recommendation system for rural tourism live streaming.The system achieves accurate matching between user interest models and tourism content through multi-source data collection and processing,user profile construction,personalized recommendation algorithm design,and result-display modules.Empirical results show that the recommendation system has significantly improved live content click-through rates by 40%,increased user engagement by 30%,and enhanced sales conversion rates by 25%.This fully verifies the significant application value of big data analysis and personalized recommendation technology in addressing the effectiveness of current rural tourism live streaming content push.
作者
郭羽宁
景莉莉
Yuning Guo;Lili Jing(School of International Economics and Trade Changchun Finance College,Changchun,Jilin 130122,China)
出处
《产业科技创新》
2024年第4期27-30,共4页
Industrial Technology Innovation
基金
《吉林省“直播+乡村旅游”营销模式与路径研究》(2023JLDS077)
吉林省中小制造企业数字化能力测量维度研究(2023JLSKZKZB054)。
关键词
乡村旅游
直播推荐
大数据
个性化
Rural tourism
live streaming recommendation
big data
personalization