期刊文献+

基于算网的通信设备质量评估方法研究

Research on communication equipment quality evaluation method based on computing network
下载PDF
导出
摘要 通信运营商设备受地理环境、使用年限及产品质量等影响,部分通信设备存在隐患或者性能下降,导致故障频发,严重影响用户感知。怎样预防故障并提前解决,一直是企业的一大痛点。本文利用AI智能算法对通信设备进行数据分析,挖掘设备潜在隐患,并给出解决方案,能够确保通信设备高质量运行。基于算网的通信设备质量评估方法,可通过大数据分析,对设备进行评估,使维护人员进行预防性维护,减少设备故障次数,具有一定的实用价值,可以极大提高用户满意度。 Communication operator equipment is affected by geographical environment,service life and product quality.Some communication equipment has hidden dangers or performance degradation,resulting in frequent failures and seriously affecting user perception.How to prevent failures and solve them in advance has always been a major pain point for enterprises.By utilizing AI intelligent algorithms for data analysis of communication devices,potential hazards can be identified and solutions can be provided to ensure high-quality operation of communication equipment.The quality evaluation method for communication equipment based on computing network can evaluate the equipment through big data analysis,enabling maintenance personnel to carry out preventive maintenance and reduce the number of equipment failures.It has certain practical value and can greatly improve user satisfaction.
作者 张丽杰 晏志强 张斌 ZHANG Li-jie;YAN Zhi-qiang;ZHANG Bin(China United Network Communications Co.,Ltd.Changde Branch,Changde 415000,China)
出处 《电信工程技术与标准化》 2024年第9期40-47,共8页 Telecom Engineering Technics and Standardization
关键词 大数据模型 算力 AI智能 big data model computational power AI intelligence
  • 相关文献

参考文献3

二级参考文献40

  • 1张磊,耿子炜,王奇文.基于SDN的SRv6 TE在新型城域网中的探索[J].网络安全和信息化,2021(7):74-77. 被引量:5
  • 2陈明奇,姜禾,张娟,廖方宇.大数据时代的美国信息网络安全新战略分析[C].第27次全国计算机安全学术交流论文集,2012,(8):42-45.
  • 3Bill Franks.驾驭大数据[M].黄海,车皓阳,王悦,等,译.北京:人民邮电出版社,2013.
  • 4Thomas H. Davenport,Paul Barth,Randy Bean. How 'Big Data'is Different [ J ]. MIT Sloan Management Review, 2012,54(01 ) :22-24.
  • 5Victor Mayer- Schonberger, Kenneth Cukier..大数据时代[M].杭州:浙江人民出版社,2013:193-232.
  • 6Philip Russom. Big Data Analytics. TDWI Best Practices Report [R]. USA:TDWI,2011.
  • 7Paul Zikopoulos, Chris Eaton, Dirk de Roos etc. Under- standing Big Data: Analyties for Enterprise Class Hadoop and Streaming Data [ R]. USA: Me. Graw- Hill, 2012.
  • 8Hsinchun Chen,Roger H. L. Chiang,Veda C. Storey. Busi- ness Intelligence and Analytics: From Big Data To Big Im- pact [J]. MIS Quarterly ,2012,36(04) : 1165-1188.
  • 9车品觉.大数据的三个维度和十诫[EB/OL].(2014-03-07)[2014-05-10].http://tech.sina.com.ca.
  • 10孙定.数据学概要[EB/OL].(2014-03-31)[2014-05-16].http://www.dooland.com/magazine/online.php?pid=MTAyNDA0.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部