期刊文献+

基于边界样本分位数的葡萄霜霉病自适应识别方法

Adaptive identification method of grape downy mildew based on quantile of boundary sample
下载PDF
导出
摘要 针对葡萄霜霉病病斑组织图像阈值难以确定的问题,提出一种基于边界样本分位数的自适应阈值确定方法,通过高斯滤波识别病斑边界,并采用边界样本的50%分位数确定为病斑阈值。之后采用蒙特卡洛方法,通过随机采样方法估算病斑比例。结果表明,与其他阈值确定方法对比,所提方法能够自适应获取病斑灰度阈值,识别精度达到92.2%,明显高于其他阈值确定方法;与传统的机器学习方法对比,在识别精度上高于BP神经网络、卷积神经网络、支持向量机,略低于VGG16模型的94.3%与ResNet50模型的96.26%,但计算时间为1.410 s,远快于VGG16模型与ResNet50模型的5.588 s与20.317 s,说明方法能够在较短的运行时间内实现较高的精度。 Aiming at the problem of difficulty to determine the threshold of grape downy mildew lesion tissue image,an adaptive threshold determination method based on quantiles of boundary samples was proposed.The boundary of diseased spot was identified by Gaussian filtering,and the threshold of diseased spot was determined by 50%quantiles of boundary sample.Then Monte Carlo method was used to estimate the proportion of diseased spots by random sampling method.The results show that compared with other threshold determination methods,the proposed method can adaptively obtain the grayscale threshold of the lesion,with a recognition accuracy of 92.2%,which is significantly higher than other threshold determination methods.Compared with the traditional machine learning methods,the recognition accuracy of this method is higher than that of BP neural network,convolutional neural network,and support vector machine,slightly lower than 94.3%of the VGG16 model and 96.26%of the ResNet50 model.However,the calculation time is 1.410 s,which is much faster than 5.588 s and 20.317 s of the VGG16 model and ResNet50 model,indicating that this method can achieve high accuracy in a shorter running time.
作者 高芮 武琼 韩玮 杨涛 卢晨媛 张黎 Gao Rui;Wu Qiong;Han Wei;Yang Tao;Lu Chenyuan;Zhang Li(College of Applied Meteorology,Nanjing University of Information Engineering,Nanjing,210044,China;Xunyi County Meteorological Bureau,Xianyang,711300,China;Yongshou County Meteorological Bureau,Xianyang,713400,China;Shaanxi Meteorological Observatory,Xi'an,710014,China)
出处 《中国农机化学报》 北大核心 2024年第10期247-253,共7页 Journal of Chinese Agricultural Mechanization
基金 国家自然科学基金青年科学基金(42005140)。
关键词 葡萄霜霉病 边界识别 样本分位数 病斑识别 高斯滤波 grape downy mildew boundary recognition sample quantile plaque recognition Gaussian filter
  • 相关文献

参考文献11

二级参考文献131

  • 1郭艳兰,牟德生,王多文,焦旭东,王鑫,何彩,姚元文.武威地区酿酒葡萄霜霉病发生流行规律研究[J].中国植保导刊,2020,0(1):48-54. 被引量:2
  • 2王国珍,樊仲庆,麻冬梅,张小波,郭惠萍.贺兰山东麓酿酒葡萄霜霉病流行规律及测报技术[J].植物保护,2004,30(4):54-56. 被引量:37
  • 3沙月霞,王国珍,樊仲庆,张毅,张新宁.宁夏贺兰山东麓不同葡萄品种对霜霉病的抗性鉴定[J].果树学报,2007,24(6):803-809. 被引量:32
  • 4章毓晋.图像工程(中册)图像分析[M]北京:清华大学出版社,200675-156.
  • 5Tabatabai A J,Mitchell O R. Edge location to sub-pixel values in digital imagery[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,(02):188-201.
  • 6Nalwa V S,Binford T O. On detecting edge[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,(06):699-714.
  • 7Steger C. Unbiased extraction of curvilinear structures from 2D and 3D images[D].Germany:Technischen Universitat Munchen,1998.
  • 8Fu G K,Moosa A G. An optical approach to structural displacement measurement and its application[J].Engineering Mechanics,2002,(05):511-520.
  • 9Yuan Xiangrong. Polynomial moving fitting method for edge identification[J].Advanced Materials Research,2011.308-310,2560-2564.
  • 10Yuan Xiangrong. Digital image edge detection method in the application of the beam displacement measurement and damage detection[J].Advanced Materials Research,2012.221-225.

共引文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部