期刊文献+

内置式永磁同步电机无感复合控制策略研究

Research on Inductor Less Compound Control Strategy of Interior Permanent Magnet Synchronous Motor
下载PDF
导出
摘要 为了解决内置式永磁同步电机无位置传感器控制系统中采用单一控制算法无法实现全速度范围内理想控制效果的问题,提出了一种改进型复合控制策略。在低速运行时,采用脉振高频注入法,解决了转子初始位置检测问题。通过二阶广义积分器代替带通滤波器,提高了系统的速度响应。在高速运行时,采用龙伯格观测器。同时,为了解决两种控制算法的切换问题,提出了基于改进粒子群算法的线性加权平均切换方法。仿真结果表明:在初始角度θ=2.5 rad的情况下,该策略能使电机运行在全速度范围内、转速误差范围控制在[-8 r/min,+5 r/min],且转子角度波动较小。该研究对机械制造与航天、航空领域具有实际指导意义。 To solve the problem that a single control algorithm cannot realize the ideal control effect in the full speed range in the interior permanent magnet synchronous motor without position sensor control system,an improved compound control strategy is proposed.The initial rotor position detection problem is solved by adopting the pulsation high-frequency injection method during low-speed operation.The speed response of the system is improved by replacing the bandpass filter with a second order generalized integrator.In high-speed operation,the Luenberger observer is used.Meanwhile,to solve the switching problem of two control algorithms,a linear weighted average switching method based on the improved particle swarm algorithm is proposed.The simulation results show that the strategy can make the motor run in the full speed range with the initial angleθ=2.5 rad,and the speed error range is controlled at[-8 r/min,+5 r/min],and the rotor angle fluctuation is small.This research is of practical guidance significance to the fields of machine manufacturing and aerospace and aviation.
作者 张奇志 王博 ZHANG Qizhi;WANG Bo(School of Electronic Engineering,Xi’an Shiyou University,Xi’an 710065,China;Shaanxi Provincial Key Lab of Oil and Gas Well Measurement and Control Technology,Xi’an 710065,China)
出处 《自动化仪表》 CAS 2024年第9期58-64,共7页 Process Automation Instrumentation
基金 陕西省科技攻关重点基金资助项目(2020GY-046)。
关键词 内置式永磁同步电机 脉振高频注入法 龙伯格观测器 无位置传感器控制系统 初始位置检测 改进粒子群算法 Interior permanent magnet synchronous motor Pulsation high-frequency injection method Luenberger observer No position sensor control system Initial position detection Improved particle swarm algorithm
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部