期刊文献+

基于二次分解的不同太阳辐射下光伏功率预测

PREDICTION OF PHOTOVOLTAIC POWER UNDER DIFFERENT SOLAR RADIATION BASED ON SECONDARY DECOMPOSITION
下载PDF
导出
摘要 考虑不同太阳辐射对光伏功率的影响,提出一种基于二次分解和改进粒子群算法的光伏功率预测模型。通过Spearman和Kendall对影响光伏功率的各气象因素进行相关性分析,发现总倾斜辐射、总水平辐射、漫射倾斜辐射、漫射水平辐射与光伏功率的相关系数较大。然后利用CLARANS将样本数据按太阳辐射强度分为强辐射、中辐射和弱辐射,针对3类数据采用自适应噪声完备集合经验模态分解(CEEMDAN)对关键气象因素和功率进行二次分解,充分挖掘时序信息并降低数据的不稳定性。提出一种改进粒子群算法(GWCPSO)用于优化卷积神经网络和双向长短期记忆网络的超参数,提高调参效率,最后构建预测模型进行光伏功率预测。分析3种太阳辐射类型下不同分解方法与网络模型的预测误差,结果表明,所的预测模型可有效提高不同太阳辐射下光伏功率的预测精度。 A photovoltaic power prediction model based on quadratic decomposition and improved particle swarm optimization algorithm is proposed considering the impact of different solar radiation on photovoltaic power.Through Spearman and Kendall's correlation analysis of various meteorological factors affecting photovoltaic power,it was found that the correlation coefficients between total tilt radiation,total horizontal radiation,diffuse tilt radiation,diffuse horizontal radiation,and photovoltaic power are relatively large.Then we use CLARANS to divide the sample data into strong radiation,medium radiation and weak radiation according to the solar radiant intensity.For the three types of data,we use CEEMDAN to decompose the key meteorological factors and power twice,fully mining time series information and reducing data instability.The GWCPSO is proposed to optimize the hyperparameter of the convolutional neural network and the bidirectional long short-term memory network,improve the efficiency of parameter adjustment,and finally build a prediction model for photovoltaic power prediction.Analyzing the prediction errors of different decomposition methods and network models under three types of solar radiation,the results show that the proposed prediction model can effectively improve the prediction accuracy of photovoltaic power under different solar radiation conditions.
作者 王德文 焦天媛 Wang Dewen;Jiao Tianyuan(School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China;Engineering Research Center of the Ministry of Education for Intelligent Computing of Complex Energy System,Baoding 071003,China;Hebei Key Laboratory of Energy and Electric Power Knowledge Computing,Baoding 071003,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期360-368,共9页 Acta Energiae Solaris Sinica
基金 河北省自然科学基金(F2021502013)。
关键词 光伏功率预测 二次分解 粒子群算法 卷积神经网络 双向长短期记忆网络 photovoltaic power prediction secondary decomposition particle swarm optimization convolutional neural network bidirectional long short-term memory
  • 相关文献

参考文献7

二级参考文献90

  • 1王育飞,付玉超,薛花.计及太阳辐射和混沌特征提取的光伏发电功率DMCS-WNN预测法[J].中国电机工程学报,2019,39(S01):63-71. 被引量:31
  • 2Li Q, Choi S S, Yuan Y. On the determination of battery energy storage capacity and short-term power dispatch of a wind farm[J]. IEEE Trans on Sustainable Energy, 2011, 2(2): 148-158.
  • 3Carlos H A, Dulce F P, Carlos B, et al. A multi-objective evolutionary algorithm for reactive power compensation in distribution networks[J]. Applied Energy, 2009, 86(7): 977-984.
  • 4Wang Yong, Cai Zixing. Combining multiobjective optimization with differential evolution to solve constrained optimization problems[J~. IEEE Trans. on Evolutionary Computation, 2012, 16(1): 117-134.
  • 5Ramirez-Rosado, Dominguez-Navarro. New multiobjective tabu search algorithm for fuzzy optimal plannhag of power distribution systems[J]. IEEE Trans. on Power Systems, 2006, 21(1): 224-233.
  • 6Kennedy J, Eberhart R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Perth: IEEE, 1995: 1942-1948.
  • 7Kukkonen S, Deb K. Improved pruning of non-dominated solutions based on crowding distance for Bi-objective optimization problems[C]//IEEE Congress on Evolutionary Computation. Vancouver: IEEE, 2006: 1178-1186.
  • 8Hwang C L, Yoon K. Multiple attribute decision making-methods and applications: a state-of-art survey[M]. NewYork: Spinge-Verlag, 1981.
  • 9Goswami S K, Basu S K. A new algorithm for the reconfiguration of distribution feeders for loss minimization[J]. IEEE Trans on Power Delivery, 1992, 7(3): 1484-1491.
  • 10Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength pareto evolutionary algorithm[R]. Lausanne, Switzerlnd: Swiss Federal Institute of Technology, 2001.

共引文献271

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部