摘要
文章提出一种基于人工智能生成内容(AIGC)的营养配餐推荐系统,结合通义千问(Qwen)大语言模型和LORA技术对模型进行微调,以实现更精准的营养建议和配餐推荐。通过构建丰富的营养信息和菜谱数据的知识库,以及利用向量数据库进行高效检索,系统能够快速响应用户的查询请求,并提供个性化的配餐方案。实验证明,该系统在推荐准确性和用户体验上均优于传统方法。这项研究的贡献在于提出了一种新的营养配餐推荐方法,并通过实验证实了其有效性。
This paper proposes a nutrition meal recommendation system based on Artificial Intelligence Generated Content(AIGC),which combines the Qwen large language model and LORA technology for fine-tuning to achieve more accurate nutrition advice and meal recommendations.By constructing a rich knowledge base of nutrition information and recipe data,and utilizing vector databases for efficient retrieval,the system can quickly respond to user queries and provide personalized meal plans.Experimental results demonstrate that the system outperforms traditional methods in recommendation accuracy and user experience.The contribution of this research lies in proposing a new method for nutrition meal recommendations and validating its effectiveness through experiments.
作者
陈钻凯
王志林
朱润键
曾沛乐
CHEN Zuankai;WANG Zhilin;ZHU Runjian;ZENG Peile(Software Engineering Institute of Guangzhou,Guangzhou 510990,China)
出处
《现代信息科技》
2024年第17期94-99,共6页
Modern Information Technology
基金
国家级大学生创新创业训练计划项目(DCXM2023042)。