期刊文献+

航天型号项目WBS模板智能推荐技术研究与应用

Research and Application of WBS Template Intelligent Recommendation Technology for Aerospace Model Project
下载PDF
导出
摘要 由于航天型号项目WBS模板应用过程中存在经验依赖性强、效率低下等问题,文章分析了当前主流推荐算法在型号项目WBS模板智能推荐中存在的问题,结合航天型号项目WBS模板的具体应用场景,研究了历史型号项目对WBS模板的操作行为(全部应用、部分应用、收藏、查看、未操作等)、属性偏好(类型、名称、部门、应用范围、其他等),提出了基于型号项目的协同过滤推荐方法,寻找与当前型号项目偏好相似的“型号项目群”,为当前型号推荐合适的WBS模板。 Due to the problems of strong dependency on experience and low efficiency on WBS template application process of aerospace model project,this paper analyses the problems existing in the WBS template intelligent recommendation for model project of the current mainstream recommendation algorithms.Combining the specific application scenarios of WBS templates for aerospace model project,this paper studies the operation behaviors(full application,partial application,bookmark,view,no operation,and so on),attribute preferences(type,name,department,application range,and so on),proposes a Collaborative Filtering recommendation method based on model project,and searches“model project groups”with similar preferences to the current model project,so as to recommend suitable WBS templates for the current model.
作者 李晓娟 栾森 胡杨博 LI Xiaojuan;LUAN Sen;HU Yangbo(Beijing Shenzhou Aerospace Software Technology Co.,Ltd.,Beijing 100094,China)
出处 《现代信息科技》 2024年第17期120-122,128,共4页 Modern Information Technology
关键词 型号 WBS模板 相似度 智能推荐 model WBS template similarity intelligent recommendation
  • 相关文献

参考文献9

二级参考文献51

  • 1Pazzani M J, Billsus D. Content-based recommendation systems[M]//Brusilovsky P, Kobsa A, Nejdl W. The A- daptive Web. Berlin, Heidelberg : Springer - Verlag, 2007,4321:325 - 341.
  • 2Melville P, Mooney R J, Nagarajan R. Content-boosted collaborative filtering for improved recommendations [ C ] //Proceeding of the 18th national conference on artificial intelligence. Edmonton: AAAI Press, 2002 : 187 - 192.
  • 3Adomavicius G, Tuzhilin A. Toward the next generation recommender systems:A survey of the state-of-the-art and possible extensions [ J ]. IEEE Trans on Knowledge and Data Engineering,2005,17 ( 6 ) :734 - 749.
  • 4Belkin N, Croft B. Information filtering and information re- trieval [ J ]. Communications of the ACM, 1992,35 ( 12 ) : 29 - 37.
  • 5Shardanand U, Maes P. Social information filtering: Algo- rithms for automating ' Word of Mouth' [C]//Proceedings of the ACM SIGCHI conference on human factors in com- puting systems. Denver:ACM Press, 1995:210 - 217.
  • 6Breese J, Hecherman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering [ C ]//Proceedings of the 14th conference on uncertainty in artificial intelligence (UAI' 98 ). San Francisco: Morgan Kauf- mann Publishers, 1998:43 - 52.
  • 7Sarwar B, Konstan J, Riedl J. Incremental singular value decomposition algorithms for highly scalable recommender systems[ C] //Proceedings of the 5th international confer- ence on computer and information science. Dhaka, Ban- gladesh, 2002.
  • 8Koren Y. Factorization meets the neighborhood: A multi- faceted collaborative filtering model [ C ]//Proceedings of the 14th ACM SIGKDD international conference on knowl- edge discovery and data mining. Las Vegas, USA, 2008.
  • 9Su X, Khoshgoftaar T M. Collaborative filtering for multi- class data using belief nets algorithms [ C ]//Proceedings of the 18th IEEE international conference on tools with ar- tificial intelligence. Arlington, USA, 2006.
  • 10Miyahara K, Pazzani M J, Collaborative filtering with the simple Bayesian classifier [C] //Proceedings of the 6th pacific rim international conference on artificial intelli- gence. Melbourne, Australia, 2000.

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部