摘要
随着城市化进程的加快,垃圾分类问题日益突出。文章设计并实现了一个基于深度学习的垃圾分类识别小程序,以提高垃圾分类的效率和准确性。该程序可以通过文字搜索、语音搜索和拍照识别三种方式来进行垃圾分类查询,通过个人发表分享和在线问答的方式来提高居民垃圾分类的知识。实验结果表明,该程序具有较高的识别准确率和实时性,可为城市垃圾分类提供有效的技术支持。
With the acceleration of urbanization process,the problem of garbage classification is becoming increasingly prominent.The paper designs and implements a garbage classification recognition Mini Program based on Deep Learning to improve the efficiency and accuracy of garbage classification.This program can perform garbage classification queries through three methods of text search,voice search,and photo recognition.It can improve residents'knowledge of garbage classification through personal sharing and online Q&A.The experimental results show that the program has high recognition accuracy and real-time performance,and can provide effective technical support for urban garbage classification.
作者
吴明珠
WU Mingzhu(Department of Information Engineering,Guangzhou Institute of Technology,Guangzhou 510075,China)
出处
《现代信息科技》
2024年第18期75-82,共8页
Modern Information Technology
基金
2023年广州市教学成果培育项目(2023128737)
广州市教学名师项目(2022JXMS021)
2023年广东省高职院校课程思政示范课程(KCSZ04168)
广州市高校课程思政示范课程项目(2023KCSZ059)。
关键词
深度学习
垃圾分类
搜索
识别
Deep Learning
garbage classification
search
identification